
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Remote sensing of NSW 
private native forests 

Options and feasibility 
October 2023  



 

  2 

 

Disclaimer: 
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1. Executive Summary 

The Natural Resources Commission (NRC) engaged The Mullion Group to deliver a remote sensing 
feasibility study in relation to the Private Native Forestry Monitoring, Evaluation and Reporting 
framework (PNF MER), as specified in the PNF Codes of Practice (the codes). The study objectives 
are to: 

• assess the capability of remote sensing technologies to monitor PNF code conditions and/or 
biophysical outcomes (noting that not all PNF code conditions or outcomes may be suitable to 
monitor remotely) 

• consider the feasibility of each remote sensing technology, including cost effectiveness, 
frequency of return sampling, usefulness of data generated, and whole-of-life-cycle 
considerations such as data storage, processing and analysis 

• propose indicators to monitor PNF code conditions and/or biophysical outcomes under the PNF 
codes 

• analyse readily available remote sensing data to demonstrate what the data can explain in terms 
of outcomes and/or conditions. 

This report addresses the first two objectives and sets the scene for final two, which will be 
addressed in two further reports. 

Remote sensing is used widely throughout the world in the context of forest monitoring and can 
support the PNF MER in considering whether the long-term outcomes listed in the PNF Codes are 
being maintained. The report is broadly structured around the first four long-term outcomes in the 
PNF codes: 

• maintain forest health and regeneration at site and bioregional scales 

• maintain the productive capacity of the private native forest estate at site and bioregional 
scales 

• maintain the persistence of native species at site and bioregional scales 

• maintain water quality and soil health at site and bioregional scales. 

Cross-references to various PNF code conditions (or clauses) are made, however, remote sensing can 
only partially inform against many of the conditions, and in some has limited or no utility. 

This report begins with a brief introduction to remote sensing and list some common sensors and 
platforms used in forest monitoring. The concept of spatial scale is introduced, as it is extremely 
important in ecosystem monitoring and often poorly understood. The outcome statements above 
refer to site and bioregional scales, which from a remote sensing perspective, require different 
technologies and approaches. Previous studies suggest that moderate resolution optical satellites 
like Landsat and Sentinel-2 are unable to accurately characterise impacts from low intensity 
harvesting and subsequent recovery. In contrast, airborne lidar can be used to measure some post-
harvest structural metrics directly (e.g., canopy height and cover), from which important ecological 
indicators such as canopy fragmentation can be derived. 

The report then briefly discusses current programs and products available in NSW, including satellite 
derived forest cover products, the State-wide Landcover and Tree Study (SLATS) and Biodiversity 
Indicator Program (BIP). The report then moves into the core sections based on the long-term 
outcomes: Forest Health, Productive Capacity, Native Species and Water and Soil Health. 

Forest health means different things to different people. It may include factors relating to stand 
structure, composition, processes, function, productivity and resilience. It is also important to note 
that forest disturbance is natural and, in some respects, essential to a healthy ecosystem. Here, our 
focus is primarily on the dominant structure of forests (i.e., the trees) and ecosystem health overall. 
Importantly, from a remote sensing perspective, it is the presentation of symptoms or impacts that 
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we can remotely sense. Attributing disturbance to its cause or correctly diagnosing health from 
symptoms requires additional information and often expert knowledge.  

With respect to maintaining the productive capacity of private native forests, at a bioregion scale, 
the impacts from current harvesting practices in private native forests are likely negligible. Recent 
research by Hislop et al. (2023b) found that only 0.37% of native forests with current PNF plans in 
northeast NSW were impacted by harvesting in a one-year period (2020-2021). The area with 
current PNF plans is around 455,000 ha in the northern code region, or 12% of the private estate. 
With that in mind, this section focuses more on the site and plot scale, and what can be achieved 
using lidar technologies. 

The PNF codes place a great deal of importance on the persistence of native species and restrict 
harvesting where threatened species are deemed to be present. In practice, the onus is on the 
landholder and/or harvesting contractor to follow these prescriptions. Remote sensing-based 
products can help inform appropriate management, especially at bioregional scales. However, it 
should be noted that vegetation type and/or habitat maps are modelled products and often have 
large uncertainties. At present, canopy growth stage and composition can be more accurately 
mapped through manual 3D (stereo) Aerial Photographic Interpretation, although AI modelling 
techniques are rapidly advancing and producing improved accuracies. Remote sensing methods that 
detect presence, and sometimes, abundance of fauna species are based on field samples (e.g., 
acoustic recorders, thermal sensors on UAVs, human observations), from which we can make 
broader statistical inferences from. 

Remote sensing has limited application in directly monitoring water and soil health in forests. Of 
most relevance to this outcome, as well as the protection of drainage features condition, are the 
high-resolution digital terrain models (DTMs) available from airborne lidar. These products can be 
used to accurately map drainage features and creeks, and potentially study soil erosion. A DTM in 
conjunction with a canopy height model and/or other optical imagery can be used to study riparian 
vegetation, from which we can infer the health of the waterway. In addition, slope and aspect layers 
can be derived from the DTM. Harvesting must not occur on slopes greater than 30 degrees, as soil 
erosion is more likely on steep slopes. Overseas, high resolution satellite imagery has been shown to 
have some utility in monitoring large scale landslides. 

There are four main dollar costs in relation to remote sensing data: acquisition costs, computer 
processing costs, data storage and human expertise costs. Acquisition costs for satellite imagery 
varies from free (e.g., Landsat, Sentinel) to reasonably expensive (e.g., Worldview, Pleiades). 
Airborne lidar and high-resolution imagery costs tend to be even higher. Computer processing costs 
can be substantial even for the ‘free’ imagery, depending on analysis methods. While it is more-or-
less free and straightforward to download a single Sentinel-2 scene, it is simply not practical to 
download 100s or 1000s of scenes to process in time series. Ideally, this processing would take place 
on high-performance computing facilities that already contain the satellite archive (e.g., NSW 
Science Data Compute (SDC), Digital Earth Australia (DEA) or Google Earth Engine (GEE)). 

Human expertise costs for analysing remote sensing data and drawing accurate conclusions from it 
are substantial. It remains largely a specialist area, requiring computer programming skills, statistical 
knowledge and domain expertise (e.g., forest dynamics). In some ways, the ever-increasing 
availability and capabilities of remote sensing makes is more challenging to derive valuable insights 
from it. Because of this, there are now numerous private companies which promise to provide ‘value 
added’ maps and data. This now includes Planet Labs, for example, which has developed from a 
satellite data acquisition company into a higher value product supplier. Finally, it is worth noting that 
financial costs also need to be considered in relation to the broader environmental and 
social/political costs. 
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2. Introduction 

Private native forestry (PNF) is the sustainable management of native forests on private property in 
line with the objects of Part 5B of the Local Land Services Act 2013 (LLS Act). Private native forests 
represent the largest single component of NSW’s native forest estate, accounting for 37 percent of 
the ~20 million hectares of native forests in NSW. PNF is a key resource for the NSW forestry 
industry and an important land management option for landholders. 

PNF codes of practice (PNF codes / the codes) set out the rules (or conditions) for forestry on private 
land. The codes cover four regions of NSW: Northern NSW, Southern NSW, River Red Gum forests, 
and Cypress and Western Hardwood Forests.1 There are around 500,000 hectares2 of approved PNF 
plans distributed across 7.4 million hectares of private native forest in NSW. A landholder must have 
an approved PNF plan prior to undertaking commercial forestry operations on private land. 
Properties with an approved PNF plan occur in a mosaic of different land uses and tenures, in 
various forest types, and each property owner would have different management objectives and 
forest use and management approaches for their property. 

In May 2022, the NSW Government released revised PNF codes following advice from the Natural 
Resources Commission (Commission) into finalising the codes.3 The codes support long-term 
outcomes and establish monitoring, assessment, and adaptive management requirements. The NSW 
Forest Monitoring Steering Committee (the Committee), independently chaired by the Commission, 
is tasked with monitoring obligations, including to propose and oversee a PNF Monitoring, 
Evaluation and Reporting (MER) framework. 

The Forest Monitoring Steering Committee has established a cross-agency technical review team to 
provide input into the development of the PNF MER framework. 

Noting that landholder participation in PNF monitoring and research is voluntary, the technical 
review team are currently considering how remote sensing approaches can be used to facilitate 
broadscale monitoring of private native forests and reduce user participation bias. To support this, a 
remote sensing feasibility study is being conducted to better understand the various technologies 
and the feasibility of these to monitor PNF code conditions and/or outcomes, including cost 
effectiveness and the usefulness of the data generated. 

The new PNF codes support six long-term outcomes, four of which require ongoing monitoring 
where remote sensing may be applicable. These include: 

• maintain forest health and regeneration at site and bioregional scales 

• maintain the productive capacity of the private native forest estate at site and bioregional 
scales 

• maintain the persistence of native species at site and bioregional scales 

• maintain water quality and soil health at site and bioregional scales. 

This report is the first stage in the remote sensing feasibility study and assesses various remote 
sensing technologies and approaches and their capabilities with respect to monitoring forests at the 
site and bioregional scales in support of the PNF MER framework. It is the first of three reports in a 
series, with the second report to focus on identifying potential remote sensing indicators for forest 
monitoring and the third to put these indicators into practice by providing worked examples and 
analysis of existing and available datasets. 

 
1  Local Land Services (n.d.) Private Native Forestry Codes of Practice. 
2  Local Land Services (n.d.) Monitoring, evaluation and reporting. 
3  Natural Resources Commission (2022) Advice on finalising Draft Private Native Forestry Codes of Practice.  

https://www.lls.nsw.gov.au/help-and-advice/private-native-forestry/private-native-forestry-code-of-practice
https://www.lls.nsw.gov.au/help-and-advice/private-native-forestry/reporting
https://www.nrc.nsw.gov.au/completed/pnf
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3. Remote sensing background 

Remote sensing refers to the process of acquiring information about an object or area by measuring 
reflected and emitted radiation at a distance. Remote sensing is often associated with data acquired 
by aircraft or satellite. However, it can also be used for on-site observation using, for example, 
terrestrial laser scanners or handheld cameras. Indeed, our eyes remotely sense any object we look 
at. Remote sensing is often thought about only in terms of collecting data, however the data is only 
the first step in the value chain, which must then be processed into products and information, which 
in turn provide knowledge and insights to drive actions and policy direction (Figure 1). There is no 
point in collecting the data if it is not going to be used to derive insights and convert these into 
policy or management actions. 

 

Figure 1. Remote sensing value chain pyramid 

There are two main categories of sensors – passive and active. Passive sensors rely on the light 
provided by the sun to measure reflected energy, or alternatively, the emitted energy (i.e., heat) of 
an object. Passive sensors include cameras operating in the visible spectrum and multi-spectral 
instruments which typically collect information in the visible, near infrared and (sometimes) thermal 
infrared portions of the electromagnetic spectrum. In contrast, active sensors transmit energy 
directly and measure the returning signal. Active sensors include radar, sonar and lidar.  

Remote sensing is used extensively for monitoring forests, due largely to the fact that forests extend 
across large areas and practical limitations restrict in-situ observations. Table 1 outlines sensors and 
platforms commonly used for monitoring forests. 

Table 1. Common remote sensing systems used in forest monitoring 

Sensor / 
platform 

Area 
covered 

Type Spectral 
resolution 

Spatial 
resolution 

Revisit 
frequency 

MODIS Global Multispectral, 
Thermal 

36 bands 250m – 1km Daily 

Landsat 8/9 Global Multispectral, 
Thermal 

11 bands 30m 8 days 

Sentinel 2 Global Multispectral 13 bands 10-60m 5 days 

Sentinel 1 Global Radar C-band 10m 12 days 

Actions

Knowledge & Insights

Products & Information

Data
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ALOS 2 Global Radar L-band 1-100m 14 days 

PlanetScope Global Multispectral 8 bands ~3m Daily 

Skysat Global / 
district 

Multispectral 5 bands 50cm Daily 
(tasked) 

Worldview 3 Global / 
district 

Multispectral, 
panchromatic 

8 bands 31cm – 
3.7m 

Daily 
(tasked) 

Pleiades Neo 2 Global / 
district 

Multispectral, 
panchromatic 

6 bands 30cm – 1.2 
m 

Daily 
(tasked) 

Aircraft District High resolution 
RGB/NIR 

3-4 bands 10cm As required 

Airborne laser 
scanning 

District Lidar NIR 10-50 
points m-2 

As required 

Terrestrial 
laser scanning 

Plot Lidar NIR > 1000 
points m-2 

As required 

Mobile laser 
scanning 

Plot Lidar NIR > 1000 
points m-2 

As required 

GEDI Global Lidar (samples) NIR ~25m 
footprint 

Onboard ISS 

Earth observation satellites 

There are two main categories of Earth observation satellites – geostationary and polar orbiting. 
Geostationary satellites always ‘see’ the same part of the Earth. To achieve this, they must be placed 
in an orbit approximately 36,000km from Earth, so that their orbital period matches the Earth’s 
rotation. Most communications and weather satellites (e.g., Himawari 8, used by the Bureau of 
Meteorology) are geostationary. In contrast, polar orbiting satellites orbit the Earth around the 
poles. Typically, these satellites are between 400-800km from Earth, make a complete orbit in 
around 90-100 minutes and are designed to be sun-synchronous, meaning that they pass the 
equator at the same local time with each orbit. 

Generally, there is a trade-off between spatial and temporal resolutions, meaning that the higher 
the spatial resolution, the lower (less frequent) the temporal resolution. To counter this trade-off, 
companies like Planet operate constellations of satellites (currently ~200)4, which together can 
provide daily coverage at higher spatial resolution (~3m). The first PlanetScope ‘dove’ satellites 
(about the size of a shoebox) were launched in 2016. 

In addition to ‘always-on’ satellites, which constantly collect wall-to-wall imagery at known 
frequencies, there are a number of ‘tasking’ satellites, which can be tasked to collect high resolution 
imagery over a particular area. Planet SkySat satellites are one example. Together there are 21 
SkySat satellites, which offer 4 band imagery at 50cm spatial resolution. Customers can request 
imagery over a particular area and the next time a SkySat satellite is in the vicinity it can be pointed 
to a particular area. The NSW government (through DPE) currently has a subscription with Planet, 

 
4 https://www.planet.com/products/  

https://www.planet.com/products/
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which allows view access to the PlanetScope archive along with the ability to request SkySat imagery 
over smaller areas. 

Spatial scales 

The term spatial resolution is typically used to refer to the pixel size in an image. However, it can be 
more accurately described in terms of the ability to resolve an object. Putting aside these particulars, 
it is perhaps more useful to think about spatial scales more generally, which could include 
resolution, coverage and the object or phenomenon in question. There may be an inclination to 
regard high resolution imagery as better than low resolution. However, in the case of forest 
monitoring, this may not be true. With high resolution imagery, the focus shifts to individual trees 
rather than the forest as a whole. Figure 1 shows an area of native timber harvesting (high intensity) 
at different spatial scales, including Landsat (30m), Sentinel-2 (10m), Planet (~3m) and Google Earth 
(airborne ~25cm). 

 

 

Figure 2. Example of native forest harvesting at different spatial resolutions 

Temporal scales 

Geostationary weather satellites like Himawari-8 provide updated images across Australia every 10 
minutes. However, the spatial resolution is 1-2km for most bands (with the exception of the red 
band, which is 500m). The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors 
onboard the Aqua and Terra satellites are examples of polar orbiting satellites that provide global 
coverage near daily at spatial resolution of 250-1000m. Landsat-8 on the other hand, provides 
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images with much higher spatial resolution (30m) but with a revisit frequency of 16 days. Note that 
through much of the Landsat program, there have been two satellites in operation, with 
complementary orbiting patterns, enabling a revisit time of 8 days. Similarly, there are two Sentinel-
2 satellites, which together offer a revisit period of 5 days. Landsat data is readily available for 
Australia from 1988 onwards and Sentinel-2 from 2015 onwards. 

Cloud cover and image compositing 

In it important to recognise that the temporal resolutions mentioned above do not guarantee a clear 
image free from cloud. The optical sensors on satellites like Landsat and Sentinel-2 cannot penetrate 
cloud. Therefore, in some regions of the world, you may wait months for a clear image. However, 
many images may be only partially obscured by cloud, meaning that the clear parts can still contain 
valuable information. Recognising this, researchers have developed automated algorithms for, 
firstly, masking clouds and cloud shadows (e.g., Zhu et al. 2015) and secondly, creating new 
composite images from a collection of images from the same time period (e.g., from the same 
month or season) (White et al. 2014). An alternative option for overcoming cloud issues is to use 
satellite radar, which has the ability to penetrate clouds. Radar sensors are showing promise in areas 
of persistent cloud-cover such as the tropics (e.g., Aquino et al. 2022). 

 

 

Figure 3. A visual representation of how pixel-based image compositing results in a cloud-free 
composite image 

Measured versus modelled data 

The distinction between measured and modelled values in remote sensing is at times unclear. It 
could be argued that most data we use is modelled. For example, the satellite imagery has already 
been through several processing steps to convert it from the values recorded at the sensor into 
meaningful reflectance values, which are typically meant to represent the reflectance of an object 
on the Earth’s surface. Likewise, lidar-derived measures such as canopy height are modelled based 
on the location of the sensor and an approximation of the ground surface in a defined three-
dimensional space. Indeed, even a common field measurement like tree diameter at breast height 
(DBH) is an approximation which assumes that a tree stem is a circle at the point of measurement. 

For practical purposes, however, it is worth treating some data, like satellite imagery, lidar metrics 
and field data, as measured values which we accept as an approximation of the truth. It is then 
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possible to create spatial models, using parametric equations or machine learning, to derive other 
variables of interest. A typical model will take the form y = f(x), where y is a singular response (or 
dependent) variable that we wish to model (e.g., above-ground biomass) and x is a collection of 
measured variables (referred to as covariate, predictor, explanatory or independent variables). The 
process is then to either mathematically compute a formula describing the relationship between y 
and the x variables or train a (supervised) machine learning model to do it. Both approaches require 
training (or reference) samples that we accept as being the truth. In the example of above-ground 
biomass, the reference data is typically computed from field plots. 

Design-based sampling 

Traditional forest inventories are based on a network of randomly selected field plots based on a 
statistically defendable design-based sample. These samples can be used to compute estimates of 
certain attributes for the entire forest estate. In an enhanced forest inventory, remote sensing data 
is used to compliment the field data to provide spatially explicit results and/or stratify the landscape 
to guide the plot selection process and increase the precision of estimates (White et al. 2013, 
Melville et al. 2015). Even without field plots, we can borrow from the principles of sampling, 
particularly the key elements of randomness and estimation, in a remote sensing only approach. 
That is, remote sensing data does not need to be wall-to-wall. We can use a selection of samples to 
make inferences about the whole estate, an approach used by Hislop et al (2021) to estimate 
historical large-scale disturbance impacts across eastern NSW forests.  
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4. Current products and programs in NSW 

There are a number of current products and programs in NSW that may be relevant to the PNF MER 
framework. It is recommended that the PNF MER framework adopt existing products where 
possible, particularly for bioregional scale monitoring. However, it is unlikely that many of these 
products, particularly those derived from moderate resolution satellite imagery, will be directly 
applicable to the monitoring of the low intensity selective harvesting undertaken in PNF. 

This section briefly outlines some of the current forest monitoring products and programs currently 
in place in NSW and Australia, including forest cover products, the State-wide Landcover and Tree 
Study (SLATS) and the Biodiversity Indicator Program (BIP). A more comprehensive overview for is 
provided in Appendix A of this report. 

Table 2. Overview of current remote sensing products and programs that may assist the PNF 
MER framework (further details are provided in Appendix A). 

Product/program Description 

National Forests and Sparse 
Woody Vegetation Data 

National annual forest cover product, modelled from Landsat 
data at (~25m) resolution. Three class product with forest (>20% 
canopy cover), sparse woody (5-20% cover) and non-forest. 
Currently covers years 1988-2021. 

State-wide Landcover and 
Tree Study (SLATS) 

Maps and attributes the location of woody clearing. Based on 
Landsat data in early years, then SPOT (5m) and now Sentinel-2 
(10m). 

Foliage Projective Cover (FPC) FPC of 11-12% is considered the equivalent to a canopy cover 
(CC) of 20%. Produced by DPE and used in various other 
products. 

Fractional Cover Separates pixels into sub-fractions of soil, vegetation and woody 
components. Available from various places, including TERN, DEA 
and through DPE. 

Biodiversity Indicator Program 
(BIP) 

In response to the NSW Biodiversity Conservation Act 2016, DPE 
established the Biodiversity Indicator Program (BIP) to assess the 
status of biodiversity in NSW. The BIP required development of a 
suite of indicators to measure different aspects of biodiversity 
and ecological integrity across the landscape. 

State Vegetation Type 
Mapping (SVTM) 

This program provides current maps of the three levels of 
vegetation classification hierarchy: Plant Community Type, 
Vegetation Class and Vegetation Formation. 

Spatial Services low resolution 
lidar 

Low resolution lidar (2-4 points m-2), collected between 2010 
and 2019, primarily for to derive accurate elevation models. 

State-wide Digital Elevation 
Model (DEM) 

Derived from lidar and photogrammetry with 5m resolution. 
Available from the NSW Spatial Collaboration Portal. 

Local Land Services high 
resolution lidar transects 

Collected over a sample of 253 PNF properties in 2020 and 2021. 



 

  14 

 

State forests high resolution 
lidar 

Collected at various times over the past decade. Latest captures 
collected in 2022/23. 

High resolution imagery High resolution aerial imagery (12-50cm) is available at various 
time steps and areas (often captured with airborne lidar). This is 
usually red, green, blue (RGB) but sometimes includes near-
infrared (NIR). 
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5. PNF code outcomes and conditions where remote 
sensing may be applicable 

Remote sensing may have limited application in monitoring many of the code conditions directly, 
particularly without coincident field data. However, there are a number of conditions that can be at 
least partially monitored using a range of different remote sensing approaches, which may help 
inform the PNF MER framework. These conditions are summarised in Table 3 and addressed more 
comprehensively in the following sections. 

Table 3. Summary table of PNF code outcomes and conditions and related satellite and airborne 
remote sensing approaches 

Outcome Approaches Useful for Other comments 

Maintain forest 
health and 
regeneration at site 
and bioregional 
scales 

At a bioregional 
scale: Moderate 
resolution satellite 
times series 

Good for large scale 
disturbances. Limited 
utility for low intensity 
disturbances such as 
PNF. May help inform 
on whether there is a 
divergence from 
‘baseline’ disturbance 
regimes 

Used extensively in 
monitoring wildfire 
impacts and associated 
forest recovery. Also 
useful for monitoring 
other large-scale 
disturbances (e.g. 
drought, pests & disease) 

At a site scale: 
airborne lidar 
(airborne laser 
scanning - ALS) 

 

 

Can be used to model 
structural complexity of 
a stand, landscape 
heterogeneity, 
connectivity and gaps 

These measures are only 
one component of forest 
health and different in 
different forest systems. 
Spatial scale has a large 
influence on results 

High-resolution 
imagery 

Can potentially be used 
to look at tree health 
and regrowth 

Needs expert 
interpretation 

Maintain productive 
capacity at site and 
bioregional scales 

At a site scale: 
Canopy height 
models (CHMs) 
from ALS 

 

Can provide an accurate 
measure of area 
harvested 

 

Need pre and post CHMs 
for this method 

ALS derived models Can provide ball-park 
estimates of basal area 
and volume 

Needs training data (e.g., 
field data and/or 
property records) 

Maintain persistence 
of native species at 
site and bioregional 
scales 

At a bioregional 
scale: habitat 
modelling with 
satellite imagery 

Large scale models Probably of limited use 
to the PNF MER. Large 
uncertainties 
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Outcome Approaches Useful for Other comments 

At a site scale: ALS As above, can be used 
to model structural 
complexity of a stand, 
landscape 
heterogeneity, 
connectivity and gaps 

Hard to define what 
measures are best. 
Different fauna species 
prefer different forest 
structure 

High-resolution 
imagery and/or ALS 

Can be used to look at 
whether exclusion 
zones are maintained, 
including potentially 
information on tree 
species 

Requires human 
interpretation 

Maintain water 
quality and soil 
health at site and 
bioregional scales 

At a bioregional 
scale: satellite time 
series 

Large scale mass 
movements of soil can 
potentially be 
monitored with satellite 
remote sensing 

Soil movements due to 
PNF unlikely to be large 

At a site scale: ALS 
derived Digital 
Terrain Models 
(DTMs) 

Can be used for 
determining drainage 
features and 
roads/tracks. Also 
useful for soil erosion 
modelling 

May need pre- and post-
harvest data 

Specific conditions  

Silvicultural method 
/ area harvested 

ALS derived CHMs Can highlight areas 
harvested 

Need pre- and post-
harvest lidar for accuracy 

Canopy gaps and 
adjacency limits 

ALS derived CHMs Canopy gaps can be 
derived from CHMs by 
defining simple height 
thresholds (e.g., > 2m) 

Forests often contain 
many gaps naturally. This 
is also influenced by 
spatial scale. 

Basal area / volume ALS spatial models Spatial models Models require 
calibration (i.e., field 
data). May not be 
accurate. 

Regeneration ALS time series Tracking structural 
recovery over time 

Regeneration as 
specified in the codes 
cannot to be accurately 
monitored without on-
ground assessment. 

ALS time-series costly. 



 

  17 

 

Outcome Approaches Useful for Other comments 

Exclusions 
maintained 

ALS and/or high-
resolution imagery 
(either satellite or 
airborne) 

Exclusion zones can 
potentially be defined 
with ALS DTMs and 
monitored using either 
ALS CHMs or high-res 
imagery. 

May require significant 
human interpretation 

Retention of habitat 
trees 

Interpretation of 
ALS and/or high-res 
imagery for tree 
species ID and 
crown size 

Can be used in fauna 
distribution modelling  

Requires expert human 
interpretation 

Construction and 
maintenance of 
forest infrastructure 

ALS derived DTMs DTMs can be used to 
identify roading, snig 
tracks and road cross 
banks 

Requires pre- and post-
harvest lidar to 
determine changes 

Pests and weeds High-res imagery Determining broad 
categories of vegetation  

Under the PNF codes, 
remote sensing may be 
of limited use. Expert 
interpreters may be able 
to classify high impact 
weeds (e.g., lantana) 
from high-res imagery 

Fire management Satellite time series Large scale fire impacts 
and recovery 

Remote sensing has 
limited applicability to 
fire management as 
specified in the codes 
(i.e., low intensity 
prescribed fire). Much 
more applicability in 
general fire 
management. 

 

From the perspective of the long-term outcomes, at both site and bioregional scales, remote sensing 
perhaps has greater applicability than directly monitoring individual conditions. It is through that 
lens that we present the information in the following sections. Figure 4 below indicates the four 
long-term outcomes and lists some of the code conditions where remote sensing is relevant. Noting 
that some conditions are applicable across different outcomes, the colours indicate which section of 
report the conditions are discussed in. 
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Figure 4. The four long-term outcomes from the PNF codes, cross-referenced with a selection of 
code conditions. The colours indicate which section of the report the various conditions are 
discussed in. 

  

Maintain forest health 
and regeneration

Maintain productive 
capacity 

Maintain persistence 
of native species

Maintain water quality 
and soil health 

Silvicultural operations including system, basal area, timing and location of harvesting, canopy gap dynamics and 
forest regeneration

Pest and weed management

Fire management and large scale ‘unforeseen’ events

Protection of habitat 
and landscape features

Protection of drainage features

Protection of 
biodiversity

Protection of habitat 
and landscape features

Construction and 
maintenance of forest 

infrastructure
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6. Forest health 

Section summary 

This section explores the application of remote sensing in its ability to detect and monitor canopy 
disturbance, particularly at bioregional scales. This includes: 

• Fire severity and recovery 

• Large scale drought impacts 

• Pests and diseases 

The information presented here is most relevant to section 4.3(5) of the PNF codes, where 
‘unforeseen’ events which have the potential to cause environmental damage at the bioregion 
scale may lead to a review of harvesting practices by the Minister. The remote sensing of fire 
discussed here has little use for condition 7 (Fire Management), which is focussed on low severity 
prescribed burning. 

Much of this section focuses on forest ecosystem health as a whole, of which large scale 
disturbances and satellite remote sensing play a greater role. PNF operations perhaps have little 
influence on forest health at this scale, but it is important that local scale forest/tree health is 
considered in the context of overall ecosystem health. More detail on site scale forest health 
measures such as stand complexity and local landscape heterogeny is provided in Section 8, after 
the technical details of lidar are discussed in Section 7. 

Remote sensing technologies discussed in this chapter include: 

Technology Scale Acquisition cost Expertise needed 

Landsat time series Regional Free High 

Sentinel-2 time 
series 

Regional Free High 

PlanetScope ‘Dove’ 
satellites 

Regional / 
Property 

~Free (NSW 
Govt has a 
licence) 

High 

Worldview-3/ 
Pleaides-Neo 

Property High Very high 

RPAS (UAVs) high-
res imagery and 
lidar 

Sub-property / 
plot 

Medium Very high 

. 

Introduction 

Forest health can include ecological, economic, and sociocultural factors, including stand structure, 
composition, processes, function, productivity and resilience. The term ‘forest condition’ may also 
be used to describe forest health. In this discussion, we focus of the dominant structure of forests 
(i.e., the trees) using a synoptic view of the canopy. 

Damaging agents which impact on tree/stand health include both physical disturbances from 
climatic processes including fire, drought and storms and biological agents such as insect pests and 
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diseases. In some respects, forest disturbance is a natural and essential part of a healthy forest 
system, helping to maintain biodiversity and cycle nutrients and carbon. It can adversely affect 
forests when the frequency or severity is outside of ‘natural’ ranges (e.g., two fires in quick 
succession). 

Remotely sensed data can quantify both forest stand and tree damage symptoms in terms of 
structure and physiological status and offer an alternative to traditional field-based approaches for 
assessing and monitoring forest health (Torres et al. 2021). 

The success of detecting and monitoring the health of native forests is governed by the ability to 
relate the temporal, spatial and spectral characteristics of canopy (or tree crown) damage symptoms 
with remotely sensed data sensitive to the damage symptoms. For this to occur, knowledge of the 
progression of damage symptoms both spatially and temporarily is required. Past studies on 
assessing the health of forests have relied on the detection of foliar symptoms from a synoptic 
perspective and the expression of these symptoms in spectral signals that can be distinguished from 
healthy vegetation. Many studies have been published that compare the capabilities of optical 
remote sensing systems for assessing and monitoring the health of native forests affected by insect 
pests and fungal diseases. A number of recent reviews summarise these approaches (e.g., Rullen-
Silva et al. 2013, Hall et al. 2016; Lausch et al. 2017, Torres et al. 2021). Fewer studies claim success 
in detecting ‘early signals’ of loss of tree vigour in native forests and have commonly relied on time 
series analysis of satellite imagery (e.g., Rogers et al. 2018). The remote detection of changes in tree 
structure that relate to poor health (e.g., crown dieback) is advancing, especially with the use of lidar 
and the application of deep learning computer vision algorithms (discussed below, in Estranda et al. 
(2023)).  

Spectral vegetation indices 

Spectral vegetation indices are generated by combining spectral reflectance values from two or 
more wavelengths (or wavebands) to provide a single value that relates to the vegetation feature of 
interest. The popularity of vegetation indices (VI) derived from broadband multispectral imagery, 
such as the Normalized Difference Vegetation Index (NDVI) is due, in part, to their ease of use, 
robustness and transferability. NDVI is derived from the red and near-Infrared bands and produces 
values that relate to green biomass and photosynthetic capacity of vegetation. However, NDVI is 
also sensitive to atmosphere and background soil effects as well as ‘saturating’ at high biomass 
values and hence is not always the preferred VI for monitoring the health of dense canopy native 
forests (Huang et al. 2021).  
 
While simple, single date VIs such as the NDVI can successfully detect crown death (e.g., Meddens et 
al. 2011), the on-going deployment of satellite optical sensors with increasing number of broad 
spectral bands, has resulted in dozens of other vegetation indices being developed. Many of these 
alternative VIs are showing abilities in discriminating between categories of crown damage severity 
(e.g., Woodward et al. 2018, Dalponte et al. 2022). An important recent addition has been the red 
edge waveband (approximately at 680-750 nm), which is included in the Sentinel-2, Pleaides-Neo 
and WorldView-3 satellite sensors. This wavelength region is important for assessing vegetation 
health because of the red edge data responsiveness to changes in foliar chlorophyll content (Eitel et 
al. 2011, Abdull et al 2018). Eitel et al. 2011 reported that the Normalized Difference Red-Edge Index 
(NDRE) obtained from the RapidEye satellite was able to detect tree stress almost two weeks earlier 
than the NDVI. Adbollahnejad et al. (2021) also advocated the benefit of the coastal blue and red 
edge bands available in WorldView-2 imagery for the early detection of European spruce bark beetle 
(Ips typographus L.) attacks.  
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High resolution satellites 

In addition to increased spectral resolution, an increasing number of satellites now offer higher 
spatial resolution compared to the moderate resolution, open-source sensors such as Landsat (30 m 
pixels). For example, Sentinel-2 satellites provide open-source imagery with 13 bands, with most 
bands at 10 m or 20 m spatial resolution and has been shown to be more effective at detecting early 
canopy damage symptoms than Landsat-8 (e.g., Abdullah et al. 2018). In 2014, the commercial 
satellite WorldView-3 (DigitalGlobe) was launched. This satellite provides 8 band multispectral 
imagery at very high spatial resolution (VHR) providing 1.24 m multispectral pixels. The higher 
spatial, spectral and temporal resolutions of Sentinel-2 and other recent commercial satellites such 
as WorldView-3 offer greater dexterity and a higher likelihood of obtaining cloud-free imagery for 
application in broad-scale forest disturbance and canopy health monitoring mapping. 
 
In a parallel development, a series of commercial micro-satellite constellations have recently been 
launched. For example, the PlanetScope constellation of micro-satellites (‘doves’) provide both high 
spatial (~3 m for multispectral bands) and high temporal resolution (daily). However, while this 
imagery tends to be less expensive imagery from the larger satellite sensors that have a similar high 
spatial resolution (e.g., WorldView 3 (1.24 m) & Pleiades (1.2 m)) the much smaller satellites tend 
not to have the radiometric and spatial consistency that larger satellites can provide, which makes 
automated time series analysis challenging.  
 
The manual interpretation of aerial imagery acquired by piloted aircraft has long been used for 
mapping forest health. Airborne digital multispectral imagery has also been used in models to detect 
and classify canopy damage symptoms (Windrim et al. 2020). Recently, Remotely Piloted Aircraft 
Systems (RPAS) (also referred to as UAVs or drones) have also been evaluated for small-scale forest 
health assessment (Ecke et al. 2022). Both aircraft and RPAS operate at much lower altitudes than 
satellites and so can provide even higher spatial resolution (< 10 cm). This permits tree level 
detection and segmentation used in the health classification of individual tree crowns. This approach 
reduces spectral noise from non-tree crown elements such as understorey vegetation and novel 
deep learning algorithms are rapidly advancing producing continued improvement in tree crown 
health classification (Zhao et al. 2023). Importantly, sampled very high spatial Imagery acquired by 
RPAS and aircraft is now often used as a source of reference (training/calibration/validation) data 
required for scaling up modelled parameters based on regional scale satellite imagery (e.g., 
Abdollahnejad et al. 2021).  

Time series analysis of satellite imagery for detection of forest 
disturbance 

Change detection based on multi-temporal satellite images is now a common approach to 
monitoring forest disturbances from numerous damaging agents including fire, pest insects and 
pathogens (e.g., Senf et al. 2015). Several optical satellite sensors acquire consistent and repeatable 
measurements over large areas at regular time intervals, enabling cost-effective spatially explicit 
monitoring of forests. A time series of a suitable spectral index can then be analysed through time at 
a pixel level (Figure 5). Numerous time series change detection algorithms have been proposed (Zhu 
2017) that permit time series analysis revealing spectral trajectories that quantify impact metrics 
such as disturbance magnitude and recovery length. These metrics can then be incorporated into 
spatial models classifying the disturbance. Hislop et al. (2019), for example, used Landsat NBR data 
to map disturbance magnitude and recovery length across large areas of forests burnt between 2002 
and 2009 in Victoria. Spectral recovery is somewhat limited in its ability to represent functional, 
structural or compositional recovery of complex forests but White et al. (2019) demonstrate that it 
can act as a reasonable surrogate. Hislop et al. (2018, 2019) defined spectral recovery in terms of the 
number of years to recover to the full pre-disturbance value of the spectral index.  
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This type of analysis is well suited to large areas and abrupt disturbances such as wildfire and high 
intensity timber harvesting (e.g., White et al. 2022) however, subtle changes in the forest canopy 
such as gradual stress from drought, can be more challenging. Recently, however, the use of dense 
time series data (e.g., monthly) has been successfully applied to detect multiple types of forest 
disturbances in eucalypt forests including slow decline based on the shape of the spectral 
trajectories (Hislop et al. 2023). Vogelmann et al. (2016) concluded that one of the biggest 
challenges for studying gradual change was the lack of appropriate data for validating results. 
Importantly auxiliary information from multiple sources such as forest fire mapping and health 
monitoring programs can used to help interpret the spectral trends (Hislop et al. 2021).  

 

Figure 5. Indicative pixel trajectories of a spectral index sensitive to canopy disturbance 

Fire disturbance 

Fire is the principal disturbance agent in NSW native forests. The recent increased frequency and 
severity of wildfires and drought is likely due to climate change, a pattern which is being observed 
globally (Nolan et al. 2022). In the PNF codes, the section on fire management refers to the use of 
prescribed fire for fuel reduction or other environmental objectives, essentially stating that fires 
should be low intensity. This is one component of fire management and one where remote sensing, 
particularly via satellite, has limited application. Remote sensing is used extensively in fire 
management more broadly, including for pre-fire assessments of fuel loads and moisture, active 
remote sensing during fires and assessing post-fire impacts. Here we principally focus on post-fire 
impacts. 

Accurate estimates of the extent and severity of fire impacts is essential for post-fire forest 
management. Traditional methods of wildfire mapping such as ground surveys or Aerial 
Photographic Interpretation (API) are time-consuming and have limitations in terms of costs and 
repeatability. Satellite data, however, can deliver rapid information to map changes to fire and 
drought impacted forest canopies in a precise, prompt, and affordable way (Hislop et al. 2023a).  

Common spectral indices used to detect and monitor fire severity are typically based on the 
Normalized Burn Ratio (NBR) which uses the Near Infrared (NIR) and Shortwave Infrared (SWIR) 
wavelengths. NBR is sensitive to forest moisture and structure while NDVI is more sensitive to 
vegetation ‘greenness’ (Hislop et al. 2018). The classification of fire severity classes using single 
spectral indices such as dNBR (differenced NBR) or RdNBR (dNBR normalized with the square root of 
a pre-fire NBR to account for variability in vegetation composition) have become standard 
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methodology for mapping fire severity. Consistency in the mapping of fire severity classes can be 
improved through the application of machine learning modelling techniques, such as the random 
forest (RF) classifier. Collins et al. (2018), for example, improved fire severity mapping accuracies 
through using RF. They also highlighted the importance of the training dataset, including number of 
points, sample balance and the geographic source of sample data were all important considerations 
for the use of satellite imagery and RF classification when mapping fire severity. 

The inclusion of other forms of spectral information may also improve fire severity mapping 
accuracy. For example, Gibson et al. (2020) introduced estimates of fractional cover derived from 
spectral un-mixing into RF modelling, in addition to common NBR indices. Spectral un-mixing 
estimates the relative sub-pixel fractions of photosynthetic and non-photosynthetic vegetation as 
well as bare soil, using a calibrated relationship with high quality, quantitative field data 
(Guerschman et al. 2015). 

The most accurate RF model from Gibson et al. (2020) included both Sentinel-2 based NBR 
reflectance indices and fractional cover indices. Highest mapping accuracies occurred for mapping 
unburnt and high severity wildfire in landscapes with moderate canopy density and low topographic 
ruggedness. Higher rates of misclassification occurred for the low and moderate fire severity classes 
and in areas of dense canopy cover and rugged topography. This in part, is due to the limitations of 
optical sensors in viewing the burnt understorey of low severity classes under conditions of high 
canopy cover and high topographic complexity.  

The results from Gibson et al. 2020 have contributed to the current methodology applied by NSW 
DPE to produce annual fire extent and severity mapping (FESM), based on temporal Sentinel-2 
temporal imagery and machine learning. The FESM has five classes of fire severity (Table 1). The 
product is produced at 10 m pixel resolution and modelled from Sentinel-2 imagery following the 
robust method presented in Gibson et al. (2020). The FESM machine learning models are trained on 
fire severity class samples from approximately half a million training data points, interpreted from 
high resolution post-fire aerial photography. 

Table 4. Description of the five fire severity classes presented in the FESM products 

Severity class Description 

Unburnt Unburnt surface with green canopy 

Low Burnt surface with unburnt canopy 

Moderate Partial canopy scorch 

High Full canopy scorch (± partial canopy 
consumption) 

Extreme Full canopy consumption 

NSW DPE has recently produced a report that summarises the FESM analyses for the 2021-2022 fire 
year, two years after the devastating Black Summer of 2019-2020. It is planned that future annual 
reports will be issued routinely in August each year. This is accompanied by the FESM spatial data 
being made available on the DPE’s Sharing and Enabling Environmental Data (SEED) portal.    

Gibson et al. (2022) recently published a methodology using satellite imagery that can assess and 
monitor post-fire recovery using a post-fire stability index. Higher values in the post-fire stability 
index were shown to be associated with higher levels of field-based measures of FPC and canopy 
cover. This methodology closely compliments the DPE FESM program and may become operational 
in the near future (R. Gibson pers. comms.). 



 

  24 

 

Drought disturbance 

Water stress directly limits gaseous exchanges, reduces transpiration and arrests photosynthesis in 
foliage and if not reversed results in leaf wilting and mortality. The 2018-2019 drought across 
eastern NSW was one of the worst on record and a key driver behind the unprecedented 2019-2020 
fire season. While the impacts of these fires received widespread attention, there were also 
considerable impacts from the drought itself, including widespread canopy collapse from tree 
mortality and stand dieback.   

Several studies have demonstrated the capability of temporal, broad band satellite imagery to 
detect severe drought in forests. Byer & Jin (2017) used MODIS multispectral time-series imagery 
and derived a trend series of normalised spectral indices (z scores). They then used Random Forest 
algorithms, trained with forest aerial detection surveys data, to detect tree mortality based on the 
remote sensing metrics and topographical variables. In a similar study, Caccamo et al. (2011) 
evaluated the capability of MODIS time series of eight indices created from 2000 to 2009 to monitor 
drought in forests within the Sydney Basin bioregion. The results were then compared to spatially 
and temporally coincident values of the Standardized Precipitation Index. Their results identified 
that the Normalized Difference Water Index was a reliable indicator of drought. This VI is sensitive to 
change in leaf water content of leaves and in fact uses the same NIR and SWIR wavebands as used in 
the NBR, effectively detecting leaf necrosis. The early detection of tree water stress is possible and 
can be achieved through the use of narrow waveband indices (i.e., hyperspectral imagery) or 
through using thermal infrared imaging (Le et al. 2023). 

Recently, Hislop et al. (2023a) presented a novel method using dense Sentinel-2 time series imagery 
to map eucalypt canopy damage due to both drought and fire across a large area. To areas identified 
as forest they applied a mask related to local fire history. Sentinel-2 monthly time series were then 
accessed and NBR values calculated with the aim of highlighting areas of forest where the NBR index 
was significantly below a pre-disturbance ‘stable’ period. Because forest types vary across the 
region, they naturally have different spectral and temporal signatures. Therefore, different 
disturbance threshold values were used for each bioregion. To objectively define appropriate 
threshold values, a previously collected human interpreted reference dataset was used (Hislop et al. 
2021). The dataset consists of 500 randomly selected 1 ha plots in the forested areas of each 
bioregion (5,000 in total), which were visually interpreted using Landsat data and available ancillary 
information to establish disturbance history from 1988 to 2020. The study of Hislop et al. (2023a) 
resulted in the production of maps and associated statistics of forests disturbed by drought, fire and 
both drought and fire and demonstrates the potential of Sentinel-2 data for monitoring the dynamic 
nature of native forests in NSW.   
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Figure 6. Example of an individual Sentinel-2 pixel through time. NBR values are shown in grey 
and the monthly median values for 2019 onward in blue. The horizontal lines are the mean and 
standard deviation for the stable period (2016–2018), used to calculate the z-values (secondary y-
axis). From Hislop et al. (2023a). 

In addition to analysis of freely available MODIS, Landsat & Sentinel 2 satellite time series data, 
some higher resolution commercial satellite products and aerial imagery have also been evaluated 
to detect drought-induced dieback at much finer spatial resolution. Fitzgerald et al. (2023) 
integrated temporal PlanetScope imagery (3m pixels) and hyperspectral airborne imagery to 
investigate drought-induced dieback of a red stringybark population in South Australia. 

Bell Miner Associated Dieback 

A notable health issue that occurs in NSW native forests is Bell Miner Associated Dieback (BMAD), 
which has been listed as a key threatening process. High densities of bell miners are associated with 
decreased avian abundance and diversity and a subsequent increase in insect (psyllids) related 
foliage damage in susceptible eucalypt crowns. This dieback syndrome affects both the physiological 
status of tree crowns and stand structure and often co-occurs with the presence of a dense shrubby 
understorey with a sparse eucalypt canopy (Stone et al. 2008). Haywood & Stone (2011) developed a 
modelling framework that used multi-sourced spatial datasets that included spectral data (SPOT-5), 
structural data (ALS), and topographical data (aspect and topographic wetness index), to produce 
maps predicting the presence of BMAD. The training data was obtained using a stratified random 
sampling methodology with the allocation of 30 plots to four spectral strata. Six models were 
evaluated and concluded that the random forest ensemble classifier was the most accurate model 
(AUC=0.97). 

Efforts to map BMAD over large scales with moderate resolution satellite imagery have largely been 
unsuccessful. This is because of difficulties in separating understory from canopy reflectance in 
optical imagery combined with the relatively small areas impacted by BMAD, proportionally 
speaking. An alternative approach for mapping health related symptoms, including BMAD, is through 
the use of aerial surveys. In Australia, aerial surveys are regularly used to map plantation forest 
health, with annual programs running since the mid-1990s in some jurisdictions (Carnegie et al. 
2018). Between 2015 and 2017, aerial surveys targeting BMAD were undertaken across 
approximately 1 Mha of native forest in northern NSW. The forest health expert mapped BMAD 
impacted areas totalling 43,000 ha (4%) (A. Carnegie, pers comms).  
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7. Productive capacity 

Section summary 

This section focusses principally on the remote sensing of forest structure, including components 
such as tree heights, basal area and aboveground biomass. Lidar is the most relevant remote 
sensing technology in this regard, which can be collected from terrestrial, airborne and 
spaceborne systems. 

Monitoring of forest structure from lidar can help ensure that the silvicultural operations outlined 
in condition 5 of the Codes are appropriate in supporting the productive capacity of private native 
forests in NSW. The approaches here are not able to measure basal area and regeneration 
directly, as outlined in the codes, as these techniques require direct field measurements.  

Remote sensing technologies discussed in this chapter include: 
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Technology Scale Acquisition cost Expertise needed 

Airborne laser 
scanning (ALS) 

Property / 
regional 

High High 

Terrestrial laser 
scanning (TLS) 

Plot Medium (if 
equipment 
already owned) 

Very high 

Mobile laser 
scanning (MLS) 

Plot Medium (if 
equipment 
already owned) 

Very high 

GEDI Regional 
(samples) 

Free Very high 

 

Successful sustainable management of native forests requires information on both forest 
composition and structural diversity, where structural diversity explains the arrangement and 
distribution of the structure of vegetation elements. Forest structure can be quantified in myriad 
ways, including the prediction of individual components (e.g., tree diameters and heights, basal 
area, aboveground biomass) or through stand-level measurements of vegetation strata and stand 
succession. Assessment of stand structure contributes directly to estimates of timber volume, 
carbon storage and habitat suitability and can therefore provide information on both forest health 
and productive capacity.  

Airborne Laser Scanning (ALS) 

Lidar (Light Detection and Ranging) datasets provide a means to evaluate the 3D structure of forests 
with reduced effort and costs compared to ground-based measurements. While tree level 
measurements such as tree height, stem diameter and tree density can be reliably obtained by field 
crew, estimates of plot level structural attributes such as understorey density and cover, are often 
inaccurate, imprecise, and time-consuming. There are now numerous lidar derived metrics that can 
accurately estimate both stand-level (e.g., Carrasco et al. 2019) and tree-level (e.g., Karna et al. 
2019) attributes. 
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Many lidar derived metrics are based on the vertical distribution of points in a defined horizontal 
area (Figure 7). The metric p95, for example, which is often used to indicate canopy top height, is the 
height at which 95% of the points are below. Common lidar metrics based on the vertical 
distribution of points include top height (e.g., p95), average height, measures of variance (e.g., 
standard deviation) and canopy cover, which is typically equal to the number of 1st returns above a 
certain height (2 m) divided by all 1st returns. 

 

Figure 7. Example of a lidar point cloud over a plot (A) and the resulting distribution of height 
values (B), with the 50th and 95th percentiles shown in red. 

Lidar data acquired by aircraft (Airborne Laser Scanning, ALS) can cover forests at the regional-level 
and provide information related to the structural conditions presented by the dominant canopy and 
larger trees. By placing a regular grid of (e.g., 30 x 30 m) across the ALS extent, we can calculate the 
different lidar metrics for every grid cell to create maps across the landscape (Figure 8), which can in 
turn be used in machine learning models. ALS data is frequently now used operationally for plot 
imputation to create wall-to-wall estimates of inventory metrics such as basal area and above 
ground biomass (e.g., White et al. 2013, Dash et al. 2015). 
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Figure 8. Example of a lidar metric (p95) calculated from the height distribution of points in each 
grid cell (pixel) across a lidar extent. 

The structural metrics that can be derived from ALS can be categorized into four main categories: 
cover, height, horizontal variability and vertical variability (Bakx et al. 2019). ALS may not be able to 
fully capture the vertical distribution of all foliage in complex, multilayered and dense forests due to 
the attenuation of the laser pulses. However, vertical profiling using ALS data has been successfully 
demonstrated in some native eucalypt forests. For example, Wilkes et al. (2016) used ALS data and 
successfully identified the vertical strata in several forest types in Victoria. Jiang (2020) was also able 
to extract height percentiles and the density of points within height classes to provide canopy profile 
models for a comparison of eucalypt forest structure in the Central Highlands of Victoria. The density 
of points was assumed to represent foliage density in different height strata and used to examine 
the connectivity between vertical layers. Thus, in addition to predicting traditional inventory metrics, 
ALS-derived vegetation metrics are now being applied to quantify a broader suite of forest stand 
assessments such as habitat suitability (e.g., Ciuti et al. 2018, Bakx et al. 2019, Carrasco et al. 2019) 
along with above ground biomass estimates (e.g., Kim et al. 2016).  

One of the most useful ecological applications of ALS is the direct acquisition of vertical foliage 
distribution and associated foliar densities, which provide detailed information of both the forest 
canopy, subcanopy elements and individual trees. The leaf area density (LAD) metric estimates total 
leaf area per unit volume and requires the sampled space to be divided into volumetric pixels 
(referred to as voxels) (Carrasco et al. 2019). Voxel-based metrics are based on summarizing the 
lidar points that fall within each voxel and are directly influenced by the chosen voxel dimensions. 
Voxel-based metrics have used to predict forest inventory attributes and canopy attributes such as 
leaf area index (Pearse et al. 2019). For example, LAD estimates are related to leaf area index and 
gap fraction (Carrasco et al. 2019) and can be derived using programs such as the R package lidR 
(Roussel et al. 2018). 

In addition to the calculation of ALS metrics that describe forest height, height variability and cover, 
Jarron et al. (2020) also included more complex lidar metrics related to stand structural complexity 
into a regression model that classified sub-canopy components. Included for consideration in their 
modelling were the vertical complexity index (VCI) (van Ewijk et al. 2011) and the vertical rumple 
index. The rumble index is a canopy complexity metric calculated by dividing the 3D surface area by 
the 2D surface (Roussel et al. 2020). 
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Lidar metrics characterising the distribution and density of vegetation within forest stands have also 
been used to classify forest successional stages (van Ewijk et al. 2011). Falkowski et al. (2009), for 
example, applied Random Forest modelling to classify forest successional stages in the inland 
northwest USA, based upon 34 lidar height metrics. Their optimal model had an overall accuracy of 
90%. 

ALS data is advocated as means for estimating forest Above Ground Biomass (AGB) when combined 
with field samples. For example, Chan et al. (2021) successfully estimated AGB over Hong Kong using 
ALS derived plot metrics, allometric equations and a sample of field-measured structured variables 
through applying a simple regression modelling methodology. In a study covering even larger areas 
in the eastern USA, Deo et al. (2021) efficiently estimated forest AGB developed a statistical 
modelling framework that integrated forest inventory plot data with spatial predictors from Landsat 
time-series imagery and ALS strip samples.  

The ability of NSW government agencies to secure ALS data has recently improved through the 
purchase of a hybrid LiDAR/spectral sensor (Leica City Mapper 2S) by the Service NSW 
Environmental Spatial Programs. In addition, the NSW Rural Fire Service is evaluating the purchase 
of an airborne Geiger-mode LiDAR sensor which has the capacity to cover larger areas more cost 
effectively than traditional ALS. 

Canopy height models (CHMs) 

As well as the metrics discussed above, ALS can be used to derive Canopy Height Models. CHMs are 
two-dimensional representations of the height of the forest canopy (Figure 9). There are numerous 
algorithms for computing a CHM. Typically, they are based on subtracting the difference between 
the first returns (top of canopy) and the last returns (ground surface). Khosravipour et al. (2014) 
introduced a ‘pit-free’ algorithm to create a more realistic (smooth) surface of the canopy. In recent 
work, Hislop et al. (2023b) used a CHM differencing technique, from lidar samples collected in 2020 
and 2021, to estimate the amount of timber harvesting in private native forests in northern NSW in a 
one-year period. The authors estimated that only 0.37% of forest with active PNF plans was 
harvested during this period. 

 

Figure 9. Example of a 1 m CHM derived from airborne lidar. The second image is a ‘zoomed in’ 
area of the first. 

CHMs are also useful for exploring local canopy gap dynamics, which are important drivers in forest 
functional processes. Silva et al. (2019) created an R package ForestGapR to automate gap detection 
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and compute gap statistics from CHMs. The work of Hislop et al. (2023b) could be extended to 
explore gap dynamics from the multi-date lidar available over some PNF properties. 

RPAS mounted lidar 

Remotely Piloted Aircraft Systems (RPAS), also referred to as Unmanned Aerial Vehicles (UAVs), or 
more commonly ‘drones’, are increasing in popularity, including in forest contexts. RPAS-mounted 
lidar technology is advancing rapidly, providing data of very high resolution (e.g., DJI Zenmuse L1). In 
terms of point densities, the data from these instruments falls somewhere between ALS and 
terrestrial lidar. At present, most RPAS Lidar platforms are flown above the canopy and hence need 
to contend with the occlusions presented by closed canopy conditions. This restricts accuracies 
obtained for stem measurements such as diameter (Neuville et al. 2021). More recently, RPAS-lidar 
systems are being developed and trialled for below-canopy forest surveys (e.g., Hyyppä et al. 2020a 
& b). However, these systems need collision avoidance capabilities and are thus still a nascent area 
of development. 

Hyyppä et al. (2020a) compared four types of laser scanning platforms, a backpack and hand-held 
Mobile Laser Scanning (MLS) system, an under-canopy RPAS and an above-canopy RPAS, for 
measuring tree level structural attributes. They concluded that the two ground-based mobile 
scanning methods and the under-canopy UAV laser scanning system enabled the estimation of DBH, 
stem curve and stem volume with a sufficient accuracy for operational applications in forests with 
low- to medium-levels of understorey vegetation. These results, however, were not achieved by the 
above-canopy RPAS. 

Terrestrial lidar instruments  

ALS sensors are positioned above the canopy and hence have limited capacity to directly measure 
tree stem parameters such as DBH, whereas Terrestrial (TLS) and Mobile Laser Scanning (MLS) 
sensors are positioned below the canopy with a ‘bottom up’ perspective. While survey grade TLS 
sensors can provide very accurate point cloud data, occlusion effects require a plot to be scanned 
from multiple locations which can be time-consuming. MLS systems, on the other hand, add the 
aspect of movement along a track (trajectory) and can reduce tree level inaccuracies created by 
occlusion by incorporating many views during data collection as well as increasing the areas 
scanned. A significant advantage of MLS technology is the removal of the need for accurate Global 
Navigation Satellite System (GNSS) signals, which can be disrupted by forest canopy, through the 
adoption of Simultaneous Location and Mapping (SLAM) technology (Gollob et al. 2020). One 
disadvantage of point cloud data acquired by MLS scanners is the non-uniformity of the pulse 
density, however, point clouds can be normalised by using voxels.    

In a boreal forest in Finland, Hyyppa et al. (2020a) compared the accuracies of hand-held, backpack 
and under-canopy UAV MLS instruments in terms of their ability to estimate DBH and stem volume 
and concluded that all three methods provided plot-level volume estimates similar or even slightly 
better than manual measurements. In Australia and New Zealand, the MLS Emesent Hovermap has 
recently received considerable attention as an alternative approach to manual field collection (i.e., 
as a plot- and tree-level sampling tool). See details in Stone & Hislop (2022) and here5. 

Several open-source packages are now available that apply individual tree segmentation algorithms 
using dense point cloud data acquired by TLS or MLS instruments, including the Forest Structure 
Complexity Tool (FSCT; Krisanski et al. 2021)6 and TLS2trees (Wilkes, et al. 2022)7. Adapting and 
improving these packages specifically for NSW native forests would significantly improve both the 
accuracy and efficiency of ground-based data collection compared to current manual methods.  

 
5 https://interpine.nz/adding-the-emesent-hovermap-slam-lidar-solution-to-our-services/ 
6 Forest Structure Complexity Tool (FSCT) available at https://github.com/SKrisanski/FSCT 
7 TLS2trees: a scalable tree segmentation pipeline for TLS data available at https://github.com/philwiles/TLS2trees 

https://interpine.nz/adding-the-emesent-hovermap-slam-lidar-solution-to-our-services/
https://github.com/SKrisanski/FSCT
https://github.com/philwiles/TLS2trees
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In a recent study (R. Jiang in Stone & Hislop 2022), developed a method aimed at improving the 
accuracy of tree height estimates obtained in the FSCT based on tree-level-PAD profiles (similar to 
LAD estimates but for the entire plant structure not just the foliage) and was able to classify trees as 
either occurring in the canopy, sub canopy or as dead trees (stags) or those that had a significant 
dieback crown (dead top). This new workflow involved building separate tree-level PAD profiles for 
three categories (1) foliage only, (2) stem only and (3) foliage + stem. Based on changes of PAD by 
height it was possible to identify height breaks that distinguished between upper and lower leaf 
density strata. Importantly, the application of this approach using dense ALS data could potentially 
improve the detection of dead and dying trees at both the site and landscape scale.    

In addition, current research is being undertaken to incorporate tree segmented MLS point clouds 
into a Virtual Reality environment for visual and on-screen measurements (D. Herries, Interpine 
Innovation NZ; M. Bryson, University of Sydney; W. Chinthamit, University of Tasmania, pers comm.). 
Preliminary analysis of Hovermap derived point cloud data collected in dense native eucalypt forest 
resulted in the successful detection of tree stems and estimation of DBH. It is hoped that this 
research will progress the accuracy and the operational adoption of MLS instruments such as the 
Emesent Hovermap for inventory assessment of PNF monitoring plots. 

Satellite derived forest height estimates 

The vegetation maps provided in the TERN AusCover databases include vegetation height which 
have been produced by integrating satellite data obtained from ALOS-1 PALSAR (radar), Landsat 
(spectral) and ICESat/GLAS (Lidar) (Scarth et al. 2023). While the resultant vegetation height 
accuracies are comparable with ALS derived heights, especially over dense canopies, the horizontal 
accuracy of this data is not suitable for fine scales. The more recent Global Ecosystem Dynamics 
Investigation (GEDI) lidar instrument on the International Space station has better horizontal 
accuracy (+/- 9 m). GEDI has been collecting lidar samples (~25 m footprint) since 2019 (it is 
currently off-line but should return in 2024). GEDI data was used by Pourrahmati et al. (2023) to 
generate canopy height models over forests in Germany. They reported that the GEDI canopy height 
over conifer forests was slightly more accurate (RMSE = 6.61m) than that over broadleaf forests 
(RMSE = 8.30m). Healey et al. (2020) also demonstrated the value of integrating samples of lidar 
data (obtained from GEDI) with wall-to-wall coverage of Landsat imagery. They demonstrated that 
Landsat-based maps of structural variables such as height and biomass can substantially benefited 
from calibration with GEDI data through minimizing signal saturation commonly associated with 
passive optical sensors. 

In Australia, Huettermann et al. (2023) recently published research which used the GEDI simulator to 
simulate GEDI data from ALS from pre-fire and the real GEDI data post-fire to study vegetation 
response in a range of GEDI metrics. 

Photogrammetric approaches 

Forest canopy heights can also be derived from high-overlap digital camera imagery. Tree heights 
can be estimated using stereo aerial images within a specialised hardware/software system 
designed for manual Aerial Photographic Interpretation (API) or via software based on the Structure 
from Motion methodology (e.g., Agisoft Metashape), which is commonly applied to imagery 
acquired by RPAs. Canopy Height Models are obtained by subtracting a Digital Terrain Model (bare 
earth elevation) from a Digital Surface Model (elevation of the top of a surface including vegetation 
and all other objects). This approach is now commonly applied to high spatial resolution RGB 
imagery acquired by RPAS, enabling both tree crown detection and height estimation. Srivastava et 
al. (2022), for example, used RPAS-derived RGB images acquired over native forest in southeast 
Queensland to derive a CHM which was successfully processed to estimate tree heights of individual 
trees. The authors do acknowledge however, that their approach would be more challenging in 
dense forests with overlapping tree crowns.  
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8. Persistence of Native species 

Section summary 

The persistence of native species (both flora and fauna) is essential if native timber harvesting is 
to continue. The codes dedicate many pages to the protection of the environment, including 
conditions on the protection of significant landscape features, habitat and biodiversity. Many of 
the conditions are focused at the tree-level (e.g., habitat trees, hollow bearing trees), features 
that are unable to be mapped with any confidence using remote sensing, particularly from above 
the canopy. 

At a site scale, measures of structural complexity, landscape heterogeneity and 
canopy/understory connectiveness may support the persistence of native species, along with 
maintaining exclusion zones around drainage features and other important landscape features. 
These metrics can be best captured with lidar, the technical details of which are discussed in 
Section 7. 

Remote sensing technologies discussed in this section include: 

Technology Scale Acquisition cost Expertise needed 

Sentinel-2 Property / 
regional 

Free High 

WorldView-3 Property High Very high 

Aerial imagery Property / plot High Very high 

Lidar Property High High 

RPAS thermal 
imagery 

Sub-property Medium (if 
equipment 
already owned) 

Very high 

Acoustic arrays Property High Very high 

. 

 

The PNF codes provide detailed requirements under Condition 8. Protection of the environment. A 
literal interpretation of these conditions at the site scale cannot be achieved with confidence using 
remote sensing approaches in many cases. However, we offer a brief assessment of some of the 
features mentioned in the code here in Table 5. Note that in some cases, features may be able to be 
mapped through manual stereo API approaches. 

Table 5. Landscape/site and tree features mentioned in the PNF codes and the relevance of 
remote sensing for monitoring these features. 

Landscape/site feature Remote sensing relevance 

Threatened ecological 
communities 

Relies on existing data. High-res remote sensing can assist in 
determining whether exclusion zones are maintained. 

Threatened populations As above 
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Areas of outstanding 
biodiversity value, rainforest, 
old-growth forest 

As above  

Wetlands, heathlands Can use existing products, which are typically derived from 
satellite remote sensing 

Rocky outcrops Medium to high resolution remote sensing products can show 
rocky outcrops with high confidence 

Cliffs, caves, tunnels or 
disused mineshafts 

Lidar (i.e., a DTM) may be able to highlight these features under 
the tree canopy 

Steep slopes Slope can be calculated accurately from a lidar DTM. At larger 
scales, there are existing DTM/DEMs available (e.g., NSW 
government DEM or global products such as the Shuttle Radar 
Topography Mission (SRTM) 

Aboriginal object or place If object/place is known and accurately mapped, high-resolution 
lidar or imagery could be used to look at exclusion zones 

Heritage items See above 

Mass movement / erosion Pre- and post-harvest lidar derived DTMs could be compared to 
assess soil movements. There are also spectral indices such as the 
Barren Soil Index (BSI) that have been proposed to monitor larger 
landslides from satellite imagery. 

Tree features  

Hollow bearing tree Unable to use remote sensing to directly map with confidence at 
this point in time. Success has been achieved using modelling 
approaches to model ‘probability’ of tree hollows across a region. 

Dead standing tree Could potentially be automated with high-resolution lidar (see 
Section 7. Terrestrial lidar instruments) or high-resolution RGB and 
advanced machine learning. 

Feed tree Would need expert interpretation of high-resolution imagery to 
accurately determine tree species 

Recruitment tree Needs field assessment, open to some interpretation 

Roost, nest or food resource 
trees 

Needs expert field assessment 

Site scale forest structure 

Structural measures such as complexity (Krisanski et al. 2021), landscape heterogeneity (Liccari et al. 
2022) and canopy/understory connectivity (Keeley et al. 2021) are considered to be important 
indicators of both forest health and the protection of native fauna species. At a site scale, ALS (as 
discussed in Section 7) is the most useful remote sensing technology for determining forest 
structure. Canopy connectivity and gaps can be defined using CHMs (Silva et al. 2019) or by splitting 
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the point-clouds into layers and/or using voxelization techniques and plant area density profiles (see 
Section 7). Complexity (or understory) richness can be inferred from lidar metrics calculated from 
the vertical height profile (e.g., standard deviation) or by using advanced techniques to determine 
canopy strata (Wilkes et al. 2016). Note that forests full of weeds such as lantana may present as 
being structurally more diverse, so these complexity metrics cannot be considered a complete 
solution. In addition, the importance of spatial scale with these measures cannot be over-stated: 
different scales will represent the landscape differently. 

Tree species mapping 

NSW DPE continues to update its State Vegetation Type Mapping (SVTM). This program provides 
current maps of the three levels of vegetation classification hierarchy: Plant Community Type, 
Vegetation Class and Vegetation Formation8. 

Another approach to mapping the composition of forests is focused on classifying the composition of 
forest cover (i.e., the assemblages of mature trees) into principal forest types (Baur 1965). Based on 
the Baur’s description of forest types, aerial photo interpretation (API) has been used to map these 
tree assemblages across some NSW forests. A subsequent process was then used to classify the 
forest types into groupings called Yield Association Groups (YAGs). YAGs are defined by the tree 
canopy species mix, elevation above sea level, site wetness and canopy height of mature trees (A. 
Kathuria, Biometrician, NSW DPI, pers comm.). A report on the YAG classification across all forest 
tenures for the NSW north coast was made available on-line by NSW DPI in 20189. This approach is 
currently being replicated for the NSW south coast. 

A key parameter for koala habitat information is the presence and density of their preferred tree 
species. This has been addressed, in part, through the predictive modelling of koala tree species. 
Tree species records for this modelling were extracted from the NSW BioNet Vegetation Information 
System10.  

Traditionally, the mapping of forest composition has been undertaken at the stand scale using 
stereo aerial photography and manual API. Skilled API operators can accurately map forest types, 
especially when presented with unclear boundaries. Unfortunately, at present in NSW, both stereo 
aerial photography and ALS data is not supported by a systematic acquisition program. Recently, 
however, the application of satellite data for mapping tree species over regional forests has been 
successfully demonstrated overseas. Melnky et al. (2023), for example, successfully developed 
classifiers of forest species using Sentinel-2 images in north-western Ukraine. Ferreira (2019) used 
high resolution imagery acquired by WorldView-3 and applied an individual tree crown-based 
approach to large, distinct tree crowns in a tropical forest in south-eastern Brazil. In Germany, Shi, 
Wang, et al. (2018) used lidar metrics for mapping tree species and Shi, Skidmore, et al. (2018) 
explored the added benefits of including hyperspectral data. However, in these studies the forest 
canopies tend to be taxonomically diverse with relatively discrete tree crowns. Closed-canopy, 
coastal sclerophyll forests in eastern NSW are dominated by eucalypt species, with the species 
within subgenus groupings being taxonomically and structurally very similar. Under these 
circumstances the mapping of eucalypt tree species is possible but requires very high spectral and 
spatial resolution data; for example, narrow band, hyperspectral imagery and ALS. Both of these 
options are  often considered too expensive for operational deployment (e.g., Lucas et al. 2008, 
Youngentob et al. 2011).   

 
8 https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/nsw-bionet/state-vegetation-type-map 
9 https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/849199/YAG-classification-guide-and-mapping-accuracy-
report.pdf 
10 https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/nsw-bionet  

https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/nsw-bionet/state-vegetation-type-map
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/849199/YAG-classification-guide-and-mapping-accuracy-report.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/849199/YAG-classification-guide-and-mapping-accuracy-report.pdf
https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/nsw-bionet
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Fauna monitoring 

In Australia, two remote sensing approaches have been developed for surveying fauna, principally as 
result of the interest in koalas. These include (1) the use of RPAS-derived thermal imagery and (2) 
ground-based acoustic sensors. Corcoran et al. (2019) have developed an automated approach that 
processes thermal imagery for the object detection of koalas in eucalypt canopies using deep 
learning algorithms trained on annotated images of known koala and non-koala heat signatures. The 
application of RPAS thermal imagery was supported by Howell et al. (2022) who demonstrated that 
this approach was cost-effective compared to on-ground surveys using spotlighting. One of the 
issues of this approach, however, relates to current Civil Aviation Safety Authority visual ‘line-of-
sight’ (VLOS) requirements for operating RPAS which can be challenging in forests. Recently, 
however, this requirement has been modified with CASA now able to authorise Beyond VLOS 
approvals for specific applications. 

Passive acoustic field instruments can remotely record the presence of vocalising species, including 
the nocturnal bellowing of male koalas during their mating season in Spring (Law et al. 2022). 
Importantly the recordings can be scanned by acoustic software and analysed automatically through 
application of species-specific recognizers. False positives can be checked manually through 
visualizing the audio spectrograms and listening to recordings. Law et al. (2022) deployed acoustic 
recorders to record male koalas in sites stratified according to timber harvesting history. They 
concluded that their approach was a highly effective method for assessing koala occupancy. The 
authors did not find that timber harvesting reduced koala density in NSW north-coast forests. 
Currently both NSW DPE and CSIRO have koala monitoring programs that involve comparing both 
these two surveying methodologies.  
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9. Water quality and soil health 

Section summary 

Current soil and water monitoring in NSW forests is limited. Accurate monitoring generally 
requires on-ground sampling. Currently, soil databases such as the NSW Soil and Land Information 
(SALIS) hold very limited soil health data from native forests. A major factor contributing to loss of 
soil health and stability is erosion. From a remote sensing perspective, particularly with respect to 
monitoring the localised impacts of sediment and protecting drainage features, accurate Digital 
Terrain Models (DTMs) derived from lidar perhaps offer the most use. Stream networks and 
drainage features can be readily extracted from DTMs, which can be buffered to define exclusion 
zones. Multi-date lidar can highlight areas of change, including possible soil erosion, along with 
whether exclusion zones around drainage features are maintained. DTMs could also be used to 
map and monitor forestry related infrastructure (in particular, roads and tracks).  

Remote sensing technologies discussed in this section include: 

Technology Scale Acquisition cost Expertise needed 

Lidar derived DTMs Property / 
regional 

High (for new 
acquisitions) 

High 

High-res imagery Property High Medium 

Single-photon / 
geiger-mode lidar 

Property / 
regional 

High Very high 

. 

 

Accurate monitoring of soil and water health requires field samples, which can then be used in 
conjunction with spatial information on climate, topography etc. to create modelled wall-to-wall 
products, such as those in the Australian Soil and Landscape Grid11. Note that these large area 
products are largely just correlations between sparse soil samples and a range of covariates 
including topography, climate, vegetation etc. Even at a local scale, soil components can vary 
greatly. At present, available soil data in NSW forests is extremely limited (Moyce et al. 2021). 

Two comprehensive reviews on monitoring water quality and quantity have been published by the 
NSW NRC (Alluvium 2021; Guo et al. 2022) and are available on their publication website12. 
Notwithstanding the two current water monitoring programs (i.e., the WaterNSW continuous water 
monitoring network and the program managed by FCNSW), both reports acknowledge the existence 
of gaps in spatial and temporal water monitoring data across native forests in NSW. The methods 
applied for obtaining data for the priority water quality and quantity indicators require on-ground 
sampling. Automatic digital sensors and logging devices can also be utilised, but subsequent 
laboratory analysis is also often required and hence these water monitoring programs are expensive 
to maintain.  Similarly, the monitoring of soil health requires the collection and analysis of soil profile 
samples. Soil survey methodologies are time consuming, require expertise and are hence expensive.  
These data can then be used in conjunction with spatial information such as climate grids and 
gamma-ray radiometric data (Cook et al. 1996) to generate soil condition maps. The resultant maps 
tend to at a relatively low spatial resolution, (e.g., 90 m grid size).  

 
11 https://esoil.io/TERNLandscapes/Public/Pages/SLGA/  
12 https://www.nrc.nsw.gov.au/publications  

https://esoil.io/TERNLandscapes/Public/Pages/SLGA/
https://www.nrc.nsw.gov.au/publications
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Remote sensing technology can also be used to detect and monitor soil erosion processes at both 
local and regional scales (Casagli et al. 2023). There are a range of spectral indices that have been 
proposed for detecting landslides (e.g., the Barren Soil Index (BSI) using Sentinel-2 imagery13). The 
use of very high-resolution optical satellite imagery in combination with LiDAR data has also been 
successfully applied to monitor mass soil movement. Recently, hillside erosion rates for the RFA 
regions in NSW were modelled using satellite spectral and LiDAR derived products (Moyce et al. 
2021). Sediment delivery hazard mapping has also been achieved within a GIS workflow 
incorporating ALS derived products, local climatic variables and field assessments (Alluvium 2022).  
At a local scale, if not covered by forest canopy, overlap airborne imagery can be used to identify 
local erosion processes such as channel initiation points and fans (Nyman 2023). 

In addition, high-resolution aerial or satellite imagery can potentially be used to monitor whether 
exclusion zones are maintained, particularly when these zones are already defined. Exclusion zones 
around waterways are considered important for maintaining water quality, by preventing erosion. 

Digital Terrain Models (DTMs) 

Lidar sensor technology is continuously advancing with increasing point density and accuracy 
(discussed earlier in Section 7), resulting in improved resolution and spatial accuracies to produce 
fine-scale Digital Terrain Models (DTMs; also called Digital Elevation Models (DEMs)). These three-
dimensional spatial models of the Earth’s surface are fundamental for deriving topographic 
parameters and for the modelling used in terrain hydrology studies, including mapping stream 
morphology and stream banks, as well as detailed road mapping. Protection of drainage features is a 
key code condition – high resolution DTMs are the best technology for mapping these. In the 
absence of high-resolution products, lower resolution elevation products such as the global Shuttle 
Radar Topography Mission (SRTM) product can be used (30 m). However, NSW has comprehensive 
elevation data available state-wide at 5 m resolution which would be more suitable where high-
resolution lidar is not available14. 

DTMs can be used in soil erosion modelling, particularly if there are multiple time-steps available. 
High resolution DTMs can also provide information on forestry infrastructure (in particular, roads 
and tracks), the maintenance of which is important for reducing flow-on impacts (e.g., erosion 
entering waterways). DTMs can also be used for watershed analysis (i.e., determining the flows of 
water across an area). Forests tend to act as catchment areas for water supply, so there is often an 
economic incentive to understand water flows and maintain water quality. Disturbance events such 
as wildfire are often seen as detrimental to water supply due to flow on effects. 

At local sites, another source of high-density lidar data can be obtained from MLS systems and RPAS 
platforms (discussed earlier in Section 7), including under-canopy RPAS scanning systems (e.g., 
Hyyppa et al. 2020 a & b). These very high-resolution datasets are suitable for monitoring minor 
changes in channels, drill networks and stream crossings, and can be used to evaluate localised 
impacts of sediment and runoff delivery. At a landscape scale, the recent advent of airborne Geiger-
mode and Single-photon lidar systems may provide a more cost-effective solution to repeat ALS 
surveys and could be applied to detect changes in topographical features. Single-photon and Geiger-
mode lidar provides denser point clouds while flying faster and operating at higher altitudes 
compared to traditional linear ALS sensors. A study by Yu et al. (2020) comparing single-photon and 
multi-photon (conventional) ALS captured over a boreal forest in southern Finland concluded that 
both systems produced ground surface (e.g., DEMs) and forest canopy characteristics to a similar 
accuracy. Currently the NSW Rural Fire service is evaluating the purchase of an airborne Geiger 
mode lidar system.   

 
13 https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/landslide_detection_rapid_mapping/  
14 https://portal.spatial.nsw.gov.au/portal/apps/sites/#/homepage  

https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/landslide_detection_rapid_mapping/
https://portal.spatial.nsw.gov.au/portal/apps/sites/#/homepage
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10. Conclusions and findings 

This report has assessed a range of remote sensing technologies and products in their ability to 
monitor forests in the context of the current PNF codes of practice and the related PNF MER 
framework. The main findings are as follows: 

• Many of the code conditions can only be partially monitored using remote sensing only 
approaches. 

• Remote sensing has a greater role in terms of bioregional scale monitoring, which is an 
appropriate scale for satellites such as Landsat and Sentinel to be used. 

• Site scale monitoring needs airborne lidar and high-resolution imagery at a minimum. 
Ideally, coincident terrestrial lidar and other field measurements would complement this. 

• The PNF MER should make use of existing products and programs where possible, noting 
that these may not be suitable for site scale monitoring. 

• Any assessment of remote sensing costs needs to consider costs (and benefits) at all levels 
of the value chain, including processing and expertise costs. 

The next report in this series is to focus on potential remote sensing indicators that can assist with 
PNF monitoring. 
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Appendix A – Details of existing products and programs 

Satellite Forest Cover 

Forests in Australia are defined as an area that is dominated by trees, usually with a single stem and 
a mature stand height exceeding 2 metres and with existing or potential crown cover of overstorey 
strata of about equal to or greater than 20 percent. Hence, forest crown cover is a popular structural 
descriptor for reporting on the status of forests (e.g., Australia’s State of Forests report). The 
reported metrics are area estimates of forest cover, which is often used as a proxy for forest extent. 
Remote sensing technologies are essential for achieving these estimates. 

Forest extent is commonly captured as either Crown Projective Cover (CPC, or crown/canopy cover, 
CC) or Foliage Projective Cover (FPC). CPC is the proportion of ground area covered by the vertical 
projection of tree crowns and treats the entire tree crown as an opaque projection. FPC relates to 
the proportion of ground area covered by the vertical projection of foliage of tree crowns and is a 
measure of foliar density. Scarth et al. (2008) developed an empirical relationship between FPC and 
CC. Typically, a CPC of 20% is comparable with an FPC of 11 to 12%, dependent on region and forest 
type. In NSW, overstorey FPC was initially predicted using Landsat satellite imagery (30m), followed 
by a series of higher spatial resolution SPOT 5 datasets (5m) and now has been adapted to use 
Sentinel-2 imagery (10m). The FPC metric is the foundational estimate used in both the Queensland 
and NSW Statewide Landcover and Tree Study (SLATS) programs.  

The National Forest and Sparse Woody Vegetation Data (NFSW)15 was developed for the National 
Carbon Accounting System (NCAS) and is now released annually by the Australian Government Dept. 
of Climate Change, Energy, the Environment and Water (DCCEEW). The NFSW has been used in 
previous NRC and PNF research to define forest extent for NSW (e.g., Spatial Vision 2022a & b; M. 
Alaibakhsh, NSW DPI Forest Science, pers. comm.). It is derived from a time series of Landsat 
imagery (1988–2021) and maps three classes of vegetation at a spatial scale of ~25m: forest cover (> 
20%), sparse woody vegetation (5–19% cover) and non-woody vegetation, with a minimum 
mappable unit of 0.2 ha. The three-class classification includes temporal smoothing using 
‘conditional probability networks’. Improvements applied to the analytical methodologies, however, 
have complicated the interpretation of trends in forest cover extent and other higher-resolution 
datasets are required for validation (Mutendeudzi et al. 2013, Soto-Berelov et al. 2018).    

While the NFSW forest canopy cover product performs well at national/state levels, it is less reliable 
when applied to local areas. Nevertheless, the nationally consistent product offers a good starting 
point for many regional applications. Accuracy can be improved through a series of land use and 
vegetation type exclusion masking. This is achieved by manual editing and intersecting with other 
spatial datasets such as the NSW State Vegetation Type Map (SVTM), Environmental Planning 
Instrument EPI land zoning, Land use 2013 and horticultural layers (e.g., avocado, mango and 
macadamia crops).  

This masking approach was also adopted by Spatial Vision (2022a & b) where they initially filtered 
the NFSW forest cover product using land use layers and the SVTM to identify only true forests. The 
SVTM (NSW DPE, 2020) is based on a 3-tier classification comprising ‘formation’, ‘class’ and ‘type’. 
The ‘class’ level was used to differentiate forest and non-forest vegetation communities. In addition, 
Spatial Vision also applied a further ‘temporal sequence refinement’ methodology using fuzzy logic 
and probability (Spatial Vision 2022a). They then compared their final 2020/2021 product with a 
filtered State-wide Landcover and Tree Survey (SLATS) layer. They reported that the two layers were 
93.5% correlated.  

Numerous studies have demonstrated that satellite optical sensors and airborne cameras with 
higher spatial resolution than Landsat or Sentinel-2 can accurately map forest canopy cover. Planet, 

 
15 available at data.gov.au 
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for example, offers SkySat satellite imagery with very high spatial resolution (0.5 m) or PlanetScope 
(~3 m), which could potentially replace traditional aircraft camera imagery for local forest extent 
mapping. However, while the imagery acquired by the small satellite constellations (e.g., 
PlanetScope) tend to be relatively cheap, they also have poorer geo-referencing performance than 
the more expensive satellites (e.g., Pleiades). Nevertheless, these higher resolution products can be 
used as reference data to validate some forest parameters, including forest cover, for the large-area 
canopy products where sample on-ground assessment is not a viable option (Corona et al. 2015). 

Lidar Forest Cover 

Light Detection and Ranging (lidar) sensors are active systems that can be used to generate high 
resolution, 3-dimensional structural information including canopy cover estimations. The Global 
Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar system on the International Space 
Station that has been providing high laser-ranging observations of forest 3D forest structure since 
2019 at country-wide scales, all-be-it as orbital tracking footprints. GEDI data from these footprints 
have now been successfully integrated with wall-to-wall optical satellite imagery, such as Landsat, to 
improve the estimates of forest cover and height (Zhu et al. 2023).  

At a local/regional scale there are several well-established methodologies for applying airborne laser 
scanning (ALS) data to derive canopy cover using lidar pulse return classifications (e.g., Karma et al. 
2020, Taneja et al. 2023) and Canopy Height Models (CHMs) (e.g., Ma 2017, Hislop et al. 2023b). 
Karma et al. (2020) compared several canopy metrics including canopy cover, derived from multi-
temporal ALS, to examine pre- and post-fire stand structure in native forests in the Central Highlands 
of Victoria. In a recent study, Hislop et al. (2023b) examined crown level changes in native eucalypt 
canopy over a one-year period through a methodology that used the differences in CHMs derived 
from two datasets of spatially coincident lidar transects. 

The acquisition costs associated with ALS data are relatively expensive compared to wall-to-wall 
satellite imagery. Costs can be reduced if aerial samples are collected in a robust design-based 
sampling framework to enable estimates of the population (e.g., estimates of canopy cover over the 
regional area of interest). For example, Matasci et al. (2018) used ALS sample ‘plots’ and 
multitemporal Landsat composites to model forest cover, height and biomass for the entire boral 
area of Canada. Luther et al. (2019) also applied a hierarchical sampling approach, using ground 
plots along with lidar covering a sub-area and spatially comprehensive satellite and environmental 
data, to improve the accuracy of several forest attributes, including forest cover over a broad area. 

State-wide Landcover and Tree Study (SLATS) 

The main aim of the NSW SLATS program is to map the location and extent of woody vegetation loss 
each year; it was developed as a vegetation monitoring compliance tool16. The program, which 
began in 2006, has vegetation loss products covering every two years from 1988–2006 and annually 
from 2006 onwards. Updated woody vegetation extent maps and the SLATS mapping are combined 
to differentiate areas of woody vegetation cleared by agriculture, infrastructure, forestry or major 
natural disturbances (e.g., fire).  

Initially NSW fractional cover products and resultant woody vegetation loss maps were derived using 
Landsat imagery, then during the period 2008 to 2015, higher resolution SPOT-5 imagery (5 m) was 
used, with results for 2015 and 2016 based on analysis of imagery from SPOT-5, SPOT-6 and 
Sentinel-2 satellite sensors. More recently the SLATS methodology has been updated to use only 
Sentinel-2 imagery (10 m). The application of the change detection algorithm results in the 
production of temporal woody vegetation extent maps showing the location, extent and foliage 

 
16 https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-science/statewide-
landcover-tree-study. 

https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-science/statewide-landcover-tree-study
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-science/statewide-landcover-tree-study
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cover of woody vegetation across all tenures of NSW. Any detection of change is then validated 
manually by experts before the maps and results are collated for state-wide reporting. 

At present, the process identifies loss in the forestry landcover class attributed to timber harvesting 
activities. However, current research is aimed at enabling the SLATS program to also monitor for 
increases in forest cover including regrowth, using Sentinel-2 imagery (T. Danaher, Science, 
Economics & Insights, NSW DPE, pers. comm.). The SLATS FPC product is being improved by, in part, 
using terrestrial Lidar for better calibration and validation of the Sentinel-2 FPC product. A multi-
temporal method combining the lidar calibrated Sentinel-2 FPC layers will assist in reducing the 
omission/commission errors associated with single date FPC images. 

To date, the SLATS woody extent product (presence/absence map showing areas having FPC >11 to 
12%) has fewer time-points available for monitoring forest extent than the NFWS product, as well as 
being derived from different satellite sensors (i.e., Landsat, SPOT and Sentinel-2). However, since 
2017, the SLATS program has been using only Sentinel 2 imagery, which provides radiometrically and 
geometrically consistent data. Current and historical SLATS data is available through the Sharing and 
Enabling Environmental Data (SEED) portal. 

Because the focus of SLATS is clearing, it is not suitable in its current form to pick up selective 
harvesting, particularly the low intensity types practiced in private forests. However, the program is 
a good example of a framework (e.g., image acquisition, high performance computing, on-going 
funding) which could be adapted for broader forest monitoring purposes. 

Biodiversity Indicator Program (BIP) 

In response to the NSW Biodiversity Conservation Act 2016, DPE has established the Biodiversity 
Indicator Program (BIP) to assess the status of biodiversity in NSW17. The BIP required development 
of a suite of indicators to measure different aspects of biodiversity and ecological integrity. These 
indicators have been defined within a hierarchical class structure covering multiple elements of 
biodiversity and ecological integrity; the methods are provided in a technical report18. The first 
Biodiversity Outlook Report was released in 202019. The BIP habitat condition theme provides 
indicators which measure the capacity to maintain natural functions and processes that support 
terrestrial species and ecosystems. To date, only two of these indicators, Ecological Condition and 
Ecological Carrying Capacity, have received attention for specific adaption to native forests. This was 
undertaken through the NRC FMIP Forest Extent, Condition & Health project.   

Ecological condition (BIP indicator 3.1a) measures the generalised quality of terrestrial habitat, 
estimating its intactness and naturalness at each location in NSW. Ecological carrying capacity (BIP 
indicator 3.1c) provides two related perspectives on habitat connectivity: the important role each 
location plays in maintaining the integrity of its broader habitat network (its link value); and how 
well connected the habitat is at any location in relation to its surrounding habitat (its spatial 
context). Both the loss of ecological condition and the fragmentation of native vegetation contribute 
to the amount of ecological carrying capacity remaining in each reporting unit (e.g., NSW 
Biodiversity Outlook Report – First assessment, Page 41). Because vegetation fragmentation directly 
affects ecological carrying capacity, researchers working on the NSW BIP aim to progress forest 
specific landscape fragmentation modelling and a forest specific indicator for connectivity. 
Regarding metrics associated with fragmentation, Drielsma et al. (2007a & b) found that there was 
no single measure from the collection of FRAGSTATS metrics (McGarigal et al. 2012) that 
encapsulated the closely related issues around landscape pattern of habitat quality, patch size, inter-

 
17 https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/biodiversity-indicator-program. 
18 Measuring Biodiversity and Ecological Integrity in NSW: Method for the Biodiversity Indicator Program 
https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-
plants/Biodiversity/measuring-biodiversity-and-ecological-integrity-in-nsw-method-190132.pdf 
19 https://www.environment.nsw.gov.au/research-and-publications/publications-search/biodiversity-outlook-report 

https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/biodiversity-indicator-program
https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-plants/Biodiversity/measuring-biodiversity-and-ecological-integrity-in-nsw-method-190132.pdf
https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-plants/Biodiversity/measuring-biodiversity-and-ecological-integrity-in-nsw-method-190132.pdf
https://www.environment.nsw.gov.au/research-and-publications/publications-search/biodiversity-outlook-report
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patch distances and patch shape. Moreover, they found that the patch concept was inappropriate to 
many Australian landscapes, which are better characterised as heterogeneous or variegated.   

The provision of trends in vegetation condition and landscape fragmentation will rely on new forest 
extent and health mapping, vegetation type classifications, and both remotely sensed and field-
based monitoring data. Ground-based data (e.g., parameters derived using the NSW Biodiversity 
Assessment Method (DPIE 2020)) are used to train, calibrate and validate new forest condition 
models. It should be noted that the framework for baseline reporting of forest condition and 
fragmentation was developed using spatial raster datasets at 90 m resolution, however, the intent is 
to downscale the spatial resolution, with particular focus on Sentinel-2 imagery.   

A reporting framework has been developed and applied to existing measures of ecological condition 
and ecological carrying capacity developed for presenting summary results in the Biodiversity 
Outlook Reports. One outcome of the NRC FMIP Forest Extent, Condition and Health project was an 
adaption of this Reporting Framework based on forest extent, designed to report on forest condition 
and landscape fragmentation using a selection of reporting units considered relevant to forest 
management in eastern NSW across a range of different management scales (J. Love, Science, 
Economics and Insights, NSW DPE, pers. comm.). At present, the forest extent-version of the 
framework is structured to report on tenure aggregated to State forests, national parks and other 
(private and crown land), as well as the NSW Regional Forest Agreement (RFA) areas, however, it 
could be adapted to also include the PNF code regions (J. Love, Science, Economics and Insights, 
NSW DPE, pers. comm.). In addition, this framework is proposed to underpin the BIP dashboard 
reporting process.  

Existing Datasets 

The appendices provided with DPE’s 2022 Native vegetation regulatory map method statement20 
provides a description of the foundational spatial datasets used in many of DPE’s programs, 
including Landsat, SPOT-5 and Sentinel-2 derived spatial products such as foliage projective cover. It 
also identifies satellite imagery from higher spatial resolution sensors managed by Planet (i.e., 
SkySat and PlanetScope). DPE now manages a NSW wide subscription for Planet imagery. This 
imagery is available on an as needs basis (e.g., monitoring natural disasters and for validation and 
accuracy assessments). However, due to the less consistent temporal and spatial concurrence of 
many of these high-resolution spatial datasets it is likely that the open-source Sentinel-2 imagery will 
continue to provide the large-area, temporal baseline imagery for many of the DPE spatial products.  

Very high resolution imagery is provided through the NSW Dept. of Customer Services aerial imagery 
program, including digital photography and airborne laser scanning data and is accessible from their 
Spatial Collaboration Portal21. Their capture programs occur within a spatial/temporal panel system 
but can also respond quickly to natural disasters. The Airborne Laser Scanning (ALS) acquisition 
program now provides accurate elevation products across NSW. Lidar data is continuing to be 
captured at various densities over specific project extents, such as urban development for flood risk 
assessment. 

Another source of NSW government data is available from the NSW Data Analytics Centre, which 
manages and maintains Data.NSW22. Spatial data for NSW is also available through the Sharing and 
Enabling Environmental Data (SEED) portal23. SEED represents a collaborative effort between 
government agencies to provide environmental data in a single source. For example, the SLATS 
woody change layers can be obtained through the SEED portal.   

 
20 https://www.environment.nsw.gov.au/research-and-publications/publications-search/native-vegetation-regulatory-
map-method-statement  
21 https://portal.spatial.nsw.gov.au/portal/apps/sites/#/homepage  
22 https://data.nsw.gov.au/nsw-data-analytics-centre  
23 https://www.seed.nsw.gov.au/  

https://www.environment.nsw.gov.au/research-and-publications/publications-search/native-vegetation-regulatory-map-method-statement
https://www.environment.nsw.gov.au/research-and-publications/publications-search/native-vegetation-regulatory-map-method-statement
https://portal.spatial.nsw.gov.au/portal/apps/sites/#/homepage
https://data.nsw.gov.au/nsw-data-analytics-centre
https://www.seed.nsw.gov.au/
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NSW DPE have also developed a high-performance computing facility (Science Data Compute, SDC) 
which is used for data processing and storage of remote sensed datasets and derived products. The 
SDC Image and Data Library provides a source of truth for a range of satellite and aerial imagery 
products. 

At a national level, there are several sources of spatial datasets that relate to forests, which can be 
accessed through the Terrestrial Ecosystem Research Network (TERN) data discovery portal24. This 
includes a national map of vegetation height and cover derived from ALOS-1 PALSAR, Landsat and 
ICEsat/GLAS (Scarth et al. 2019). Finally, Geoscience Australia’s Digital Earth Australia (DEA)25 Open 
Data Cube is a collaboration with the National Computational Infrastructure (NCI) and provides 
access to Landsat and Sentinel-2 ‘Analysis Ready Data’ archived imagery. DEA also provides open 
access to a series of vegetation spatial products, including Landsat-derived products such as 
Fractional Cover. 

 
 
  

 
24 https://portal.tern.org.au/  
25 https://www.dea.ga.gov.au/  

https://portal.tern.org.au/
https://www.dea.ga.gov.au/
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