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Update 1: Description of overall methodology including modelling approaches  

1.1 Overview  

The overall strategy being adopted by the joint project team is to apply differing but complementary 

assessment approaches to derive results and insights into soil condition baseline levels, their driving 

influences and their trends.   

The assessment approaches range from empirical to machine learning:  

(i) purely empirical approach, based on existing soil sampling and survey data, eg, NSW soil 

landscape mapping program and the NSW 2008-09 Monitoring Evaluation and Reporting 

(MER)  

(ii) a pragmatic but robust digital soil modelling and mapping (DSMM) approach, mainly 

employing multiple linear regression (MLR) but possibly random forest (RF) techniques; 

(iii) a data cube approach that combines machine learning techniques with covariates that 

vary in space, time and space and time to allow predictions through space and time of soil 

condition. 

We will assess the results and similarities between the different approaches on an ongoing basis 

during their implementation and upon completion to derive final conclusions and recommendations.  

Together, the results from the different approaches will provide an indication of levels of consistency 

and uncertainty of the final combined products. 

We will attempt to derive models and maps of soil condition relating to individual indicators 

(properties) for past, present and future temporal frames. We then combine these indicators into a 

single index of overall soil condition. The proposed key indicators to be assessed include: soil organic 

carbon, pH (acidity/alkalinity), soil nutrients (macro and micro), soil erosion (hillslope water) and soil 

structure/compaction. Other indicators such as soil biodiversity may also be explored. These 

indicators are consistent with the Montreal Process. 

For combining the different indicators into a single condition index, we will either use an existing 

scheme or develop a new scheme suitable for this program based on our own experience and 

knowledge. Several possible schemes were outlined in Soil health and stability monitoring in forests, 

Background and review of potential indicators (Soil and Landscape Assessment Team, 2020, advanced 



draft as submitted to NRC, 21.9.2020). These include the 2008-09 MER scheme (Chapman et al. 2011, 

OEH 2014), and those used for North American forest soil health (Amacher et al. 2007, Lawrence et 

al. 2016).  

Soil health has been defined in several ways. We will attempt to address soil health in terms of two 

broad concepts: 

(i) condition relative to natural (pre-European) state; the greater the difference from 

natural soil condition the poorer the soil condition     

(ii) production potential – or soil quality, considering soil fertility and constraints (not 

climate), the greater the productive potential of the soil, the better the soil condition.  

We propose to assess soil health according to both concepts for the current time frame (approx. 2010 

to 2020), a pre-disturbance time frame (ie, entirely natural) and future time frames (under different 

climate, land management and fire scenarios). 

 

1.2 Empirical approach  

This approach will use existing soil-landscape units, with breakdown into smaller, more pedo-

physiographically uniform units or “facets” for pilot projects in certain regions. 

Existing data will be applied to all units, recording exact location of points, type of survey (eg, MER, 

soil-landscape mapping) and soil field and laboratory data. 

Conclusions on baseline condition and trends will be derived from mainly qualitative or semi-

quantitative analysis of the available data. The process will assist in clearly identifying new sites for 

further sampling in future programs (eg, revisiting of MER sites or poorly represented soil landscape 

units and facets)   

Key steps 

• Compile best soil-landscape mapping data over the entire subject NRC forest area 

• Spatially identify known sample points, including recording of sampling quality, eg, full lab or 

only field data), identify key gaps in data 

• Within pilot project areas, divide into facets, based on soil landscape data and using 

topographic modelling. Such spatial division could follow techniques developed in the 2007 

Coastal Comprehensive Assessment (CCA) program (Yang et al. 2008), the 2018 ASRIS program 

using topographic wetness index (Gray and Young, unpublished) or recent assessment 

programs using Landform 7. 

• Prepare dataset over each facet, including, where available; information on soils landscape, 

forest type, known management history, bushfire and hazard reduction history 

• Undertake an assessment of soil health over each facet. This will involve identifying and clearly 

listing the key indicators for soil health. Apply the agreed assessment scheme, eg, those used 

in the 2008-09 MER program (Figure 1a & b). Apply in respect to: 

o condition relative to natural state: scheme to broadly involve identifying conditions in 

completely undisturbed equivalent soil facets, then assess difference in condition to 

other physically near-equivalent facets  

o soil-landscape constraints for forest productivity:  to broadly assess soil and land 

constraints, including physical and chemical fertility indicators. It will not consider 



climate directly (a major driver of forest productivity, but possibly as an influence in 

soil condition) 

• Draw conclusions on temporal trends in individual facets where possible, eg,  

o where differences occur in physically similar units under different forest 

management,  

o where repeat soil sampling has occurred.  

• Attempt to quantify changes and trends semi-quantitatively where possible, but some 

analysis may be qualitative only  

 

Figure 1a: Rating table from MER program: Allocation of soil carbon levels into soil condition classes  

%OC 

Plains Slopes Tablelands 

Tablelands 

high altitude Coastal 

Organic  

soils 

GSG Group  GSG Group  GSG Group  GSG Group  GSG Group GSG Group 

A B C A B C A B C A B C A B C D 

>16.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

12.0 to 16.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 

8.0 to 12.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 

6.0 to 8.0 5 5 5 5 5 5 5 5 5 4 5 5 4 5 5 2 

5.0 to 6.0 5 5 5 5 5 5 5 5 5 3 4 5 3 4 5 2 

4.0 to 5.0 5 5 5 5 5 5 5 5 5 3 3 4 3 3 4 2 

3.0 to 4.0 5 5 5 5 5 5 5 5 5 3 3 3 2 3 3 1 

2.6 to 3.0 5 5 5 5 5 5 4 5 5 2 3 3 2 2 3 1 

2.0 to 2.6 5 5 5 4 5 5 3 4 5 2 2 3 2 2 3 1 

1.6 to 2.0 4 5 5 3 4 5 3 3 4 2 2 2 1 2 2 1 

1.2 to 1.6 3 4 5 3 3 4 2 3 3 2 2 2 1 2 2 1 

1.0 to 1.2 3 3 4 2 3 3 2 2 3 2 2 2 1 2 2 1 

0.8 to 1.0 2 2 3 2 2 2 1 2 2 1 2 2 1 1 2 1 

0.6  to 0.8 2 2 2 1 2 2 1 1 2 1 1 2 1 1 2 1 

<0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 



 

Figure 1b: Rating table from MER program: Soil structure condition class based on soil test values and surface 

soil type   



1.3 Pragmatic DSMM approach 

This approach will employ digital soil modelling and mapping (DSMM) techniques that are designed 

to be “transparent” and relatively easily understood by many potential users of the results, but also 

robust and credible.  

Modelling techniques will include multiple linear regression (MLR) and random forest (RF) techniques. 

Bootstrapping processes involving up to 100 iterations of maps would be applied. These allow the 

production of digital maps, typically to 100 m resolution, presenting current levels of the various soil 

indicators:  organic carbon, pH, macro nutrients, total P, EC etc. These would be similar to those 

presented in OEH (2018) and available on SEED. Assessment of soil erosion will be modelled based on 

techniques developed in Yang (2020). 

Substitution modelling techniques will be employed. These involve the development of models then 

the substitution of key component layers to represent changed conditions. Similar approaches have 

been termed “space for time” modelling. The changes proposed for examination include:  

• current climate with future climate layers (derived from NARCliM program), as demonstrated 

in Gray and Bishop (2019)  

• current fractional vegetation cover layer with lower vegetation cover layer, as may be 

indicative of higher forest clearing levels, eg, 2001-2019 average reduced by 10%. A similar 

approach is being adopted by Gray et al. (in prep) for soil carbon sequestration with additional 

vegetation cover (Figure 2) 

• a proposed forest disturbance index (FDI, ie, 1: no forest disturbance to 4: high forest 

disturbance), apply with a higher disturbance rating, eg, FDI 1 changed to FDI 2   

• current bushfire regime to be substituted with a higher intensity, more frequent bushfire 

regime. Also include changes to hazard reduction regime 

From resulting maps, derive boxplot results for different environmental conditions, using either three, 

four of five variables. A similar approach is presented in Figure 3 for potential carbon sequestration 

(Gray et al. in prep). Results could be based on the following division of classes: 

(i) soil type (eg, 5 fertility class),  

(ii) climate (eg, 4 rainfall or rain/temp classes),  

(iii) vegetation cover/forest type (eg, 5 classes, tall closed forest, woodland, etc),  

(iv) level of logging disturbance (low, mod, high),  

(v) fire history 

Key steps 

• produce digital soil maps of values of key indicators properties under current conditions  

• derive preliminary estimate of condition (forest productivity) of each indicator 

• combine indicators into a single condition rating for forest productivity 

• apply substitution process with DSMM to determine values of indicators in past and future 

under different environmental/land management conditions 

• by comparing with natural (pre-European) conditions, derive estimate of condition relative to 

natural for each indicator. Combine these into a single condition rating 

• use results to determine potential quantitative estimates of change, use plots such as box 

plots to demonstrate the change and trends (eg, similar to Figure 3).  



 

Figure 2: State-wide potential SOC sequestration with 10% absolute extra vegetation cover (Gray et al. in prep) 

 

 

Figure 3: SOC sequestration potential (with 10% absolute vegetation cover increase) by enviro class (0-30 cm, 

Mg ha
-1

, mean and upper & lower 90% confidence intervals) (Gray et al. (in prep) 
 

 

 



1.4  Data cube approach 

The focus of this part of the project will be to build a model to predict soil health and stability in space 

and time.  Soil organic carbon has been described as the cement that binds soil particles together and 

stores the reservoir of soil biology that contribute to soil health.  Due to its importance and expected 

abundance of observations the main focus for this approach will be soil organic carbon.  The target 

will be predictions of the top 30 cm of the soil profile due to this being the layer used in the national 

carbon account system (NCAS) to simulate changes in SOC (Richards and Evans, 2004) and being most 

impacted by disturbances such as fire and erosion (Heath et al, 2009). 

Pedo-transfer functions related to soil erodibility (the K factor in the Revised Universal Soil Loss 

Equation) and bulk density (compaction) (Tranter et al., 2007) which use carbon and particle size 

fractions as inputs will be used to assess erosion and compaction in a more direct manner. Similarly 

to soil carbon, particle size fraction observations will be more abundant in historical databases than 

measures of soil stability such as bulk density and strength. The use of PTFs allows us to leverage off 

the more abundant particle size fraction and carbon to predict trajectories in space and time of soil 

stability as represented by compaction and erodibility. 

A data cube approach is illustrated in Figure 4. This involves developing a data cube of potential 

predictors that vary in space, time and space and time. This approach has only been possible in the 

past decade with free and open access to continental scale datasets for terrain (Grundy et al. 2015) 

and remote sensing platforms (e.g. Landsat, MODIS, Sentinel) providing weekly images across the 

world (Lewis, Oliver et al. 2017). Using soil organic carbon as an example each measurement would 

have a spatial location and date of sampling. From this we could estimate the values for a range of 

covariates such as weather, terrain attributes and remote sensing for the same location and time 

when the sample was taken.   

 

 

Figure 4. Conceptual framework for predicting soil health and stability 

In the case of covariates that vary in time we would use a representation of current and past 

conditions.  For example, mean monthly rainfall in the 3 years prior to sampling.  This is because soil 

organic carbon is a function of current and past conditions. A data scientist with no domain knowledge 

in soil could naively put the whole time series of rainfall in the model. Feature extraction as 



represented by this simple example of taking the mean value over the last 3 years has been shown to 

create more interpretable models.  A machine learning method is then used to build a model to predict 

soil organic carbon based on the data cube of predictor variables.  Members of the team have 

successfully applied this approach to soil moisture (Wimalathunge and Bishop 2019) and grain yield 

(Filippi, Jones et al. 2019).   

We would apply the same approach to model soil organic carbon, bulk density and soil erodibility 

subject to data availability.  Essential for this approach to work is sufficient data in space and time for 

organic carbon.   

The approach will be implemented with Random Forest and Cubist models  

The advantage of the data-driven approach is that disturbances such as road networks, fires and 

logging can be represented in the data cube.  For example, distance to nearest road could be used as 

a predictor.  In the case of fire/logging we could also add in a covariate related to time since the last 

disturbance event and a severity measure based on a change in a band ratio such as normalised 

difference vegetation index (NDVI) before and after the event. 

Once a model is built we can use it to: 

• understand key drivers of soil health and stability across jurisdictions and also for localised 

regions using interpretive machine learning approaches which would tell us for a particular 

location what is causing an indicator to increase or decrease (Biecek 2018) 

• map in space and time for the whole record where we have soil observations and values for 

the temporal predictors in the data cube. However, care has to be taken when extrapolating 

to outside the bounds of where we have soil observations in the data cube attribute space 

To address the issue of extrapolation and applicability of the models we will implement the approach 

described by Meyer and Pebesma (2020). Their method delineates the area of applicability (AOA) of a 

model based on the dissimilarity index (DI).  This will show where in the data cube space (space-time) 

that we can make reliable predictions given our soil observations.   

The output of our data-driven approach will be maps through time of indicators at a spatial resolution 

of 30 m on a monthly time step for the period 1984-2020. The time period coincides with the record 

of Landsat imagery on Google Earth Engine that is available as surface reflectance. Satellite imagery 

will be the most restrictive part of the data cube in terms of access to historical data and therefore be 

limit on how far back we can hindcast.  The 30 m resolution matches the Landsat resolution and the 

monthly time step is based on the rate of change in the key indicator for this study of soil carbon. 

The maps will have an associated 95% prediction interval allowing for assessment of the significant of 

the trend on a pixel-basis by seeing if the prediction intervals overlap between time periods.   

As described earlier we can use interpretive machine learning methods to identify the dominant 

drivers of the change based on the variables from the data cube that are selected in the model and 

the magnitude of their effect on the predictions.  This can be explored at different spatial scales from 

across all jurisdictions, to individual forest estates down to the pixel level. 

 

  



Update 2 - Review and collation of existing datasets related to soil health & stability, 

identify key gaps, including aerial gaps  

2.1 Soil point datasets 

• NSW Soil and Land Information System (SALIS); comprises soil observations collected over 
several decades; includes detailed descriptions of site and soil profiles, including observed 
land degradation. Coverage over NSW RFA forested areas includes a total of approximately 
6470 profile points with field data, of which approximately 1630 contain at least some 
laboratory data on key physical and chemical soil properties. 
(https://www.environment.nsw.gov.au/topics/land-and-soil/information/salis ) 

• 2008-09 NSW Monitoring Evaluation and Reporting (MER) program datasets: comprises 
extensive field and laboratory soil data over forest and woodland areas; over 170 points across 
NSW with approximately 50 points in RFA regions of all tenures (including unprotected 
freehold) and 30 points in specific tenures the subject of the current proposal.  Laboratory 
data includes total carbon, carbon fractions (particulate, humus and resistant forms of 
carbon), bulk density and other properties 

• Soil datasets from a decade long University of Sydney bushfire research program led by Dr Bell 
which include sampling before and after bushfires and prescribed burns 

2.2 Soil spatial datasets 

• Polygonal soil map layers: these provide detailed descriptions and data on soil and landscape 
character. Extensive coverage over NSW forest areas are available through the Soil -landscape 
mapping series, typically at 1:100 000 scale but some at 1:250 000 scale.  Several areas are 
covered by Soil and Land Resource Series mapping, typically at 1:250 000 or coarser 
(https://www.environment.nsw.gov.au/topics/land-and-soil/information/soil-maps )   

• Digital soil maps: raster layers prepared through quantitative modelling techniques; includes 
a suite of physical and chemical soil properties across the State with resolution of 100 m and 
multiple standard depth intervals down to 2 m 
(https://datasets.seed.nsw.gov.au/dataset/digital-soil-maps-for-key-soil-properties-over-
nsw ) 

• Modelled hillslope erosion layers, with monthly coverage back to January 2000 
(https://datasets.seed.nsw.gov.au/dataset/modelled-hillslope-erosion-over-new-south-
wales  

• Soil change with climate change to approximately 2070 - from NARCliM program; includes 
high resolution maps of projected hillslope erosion and change in organic carbon, pH and 
macro-nutrients (https://climatechange.environment.nsw.gov.au/Impacts-of-climate-
change/Soil ) 

 

2.3 Other key environmental datasets   

• Fire extent and severity maps, from DPIE https://datasets.seed.nsw.gov.au/dataset/google-
earth-engine-burnt-area-map-geebam  

• High resolution DEMs (LiDAR 1-10 m) 

• High resolution images (Sentinel, Landsat, ADS40/80).  Landsat and Sentinel will be accessed 
from Google Earth Engine. 

• Land use data: polygonal layers including 2007, 2017 releases, from DPIE: 
https://datasets.seed.nsw.gov.au/dataset/nsw-landuse-2013  

• MODIS fractional vegetation cover data, from CSIRO 
http://www.auscover.org.au/datasets/fractional-cover-modis/  

https://www.environment.nsw.gov.au/topics/land-and-soil/information/salis
https://www.environment.nsw.gov.au/topics/land-and-soil/information/soil-maps
https://datasets.seed.nsw.gov.au/dataset/digital-soil-maps-for-key-soil-properties-over-nsw
https://datasets.seed.nsw.gov.au/dataset/digital-soil-maps-for-key-soil-properties-over-nsw
https://datasets.seed.nsw.gov.au/dataset/modelled-hillslope-erosion-over-new-south-wales
https://datasets.seed.nsw.gov.au/dataset/modelled-hillslope-erosion-over-new-south-wales
https://climatechange.environment.nsw.gov.au/Impacts-of-climate-change/Soil
https://climatechange.environment.nsw.gov.au/Impacts-of-climate-change/Soil
https://datasets.seed.nsw.gov.au/dataset/google-earth-engine-burnt-area-map-geebam
https://datasets.seed.nsw.gov.au/dataset/google-earth-engine-burnt-area-map-geebam
https://datasets.seed.nsw.gov.au/dataset/nsw-landuse-2013
http://www.auscover.org.au/datasets/fractional-cover-modis/


• Climate and weather data, derived from BoM 
http://www.bom.gov.au/climate/data/index.shtml?bookmark=201  

• Climate projection data from NARCliM program, from DPIE 
(https://climatechange.environment.nsw.gov.au/ 

 

2.4 Example datasets for data cube   

Table 1 gives some examples of the types of covariates that will be used in the data cube approach.  

These are in addition to those described in sections 2.1-2.4. 

 

Table 1 Covariates 

 Covariate Source Resolution Characteristics 

Spatial DEM, slope Geoscience 

Australia 

30 m Topographically 

controlled effects 

Land use MODIS 500 m, annual Land management 

 Topographic Wetness 

Index (TWI)  

ASRIS 90 m  Topographic control 

on hydrological 

processes 

 Clay % (0-30,30-100 

cm) 

SLGA 90 m  Water holding 

capacity 

Spatial & 

temporal 

Evapotranspiration(ET)  MODIS 500 m, 8 day total Plant water use 

Enhanced Vegetation 

Index (EVI) 

 

Landsat/Sentinel 10 – 30 m Seasonal vegetation 

greenness 

Precipitation(P)  BOM 5 km, daily Relates to soil water 

content 

 Temperature  

(min, max & average) 

SILO 5 km, daily Temperature 

difference effects 

which relate to ET 

 Solar radiation SILO 5 km, daily Relates to 

evaporation 

 

2.5 Aerial gaps in soil observations 

Figures 5-7 present data for locations where surface organic carbon has been measured and are based 

on the combination of the MER and SALIS dataset held by DPI-E.  Figures 6 and 7 present their spatial 

distribution for NSW and the RFA regions for different time slices.   Figure 8 presents the same data 

but as number of observations per RFA region with different time slices. 

 

http://www.bom.gov.au/climate/data/index.shtml?bookmark=201
https://climatechange.environment.nsw.gov.au/


 

Figure 5. Spatial distribution of surface organic carbon measurements across NSW 

 



 

Figure 6. Spatial distribution of surface organic carbon measurements across RFA regions 

 

 



 

Figure 7. Number of surface organic carbon measurements across RFA regions 

 

In broad terms the number and distribution of soil carbon measurements for each time slice is 

promising in terms of applying the data cube approach.  An obvious issue is the lack of data for 2010 

onwards but if the pre-2010 vegetation and weather variation represents the 2010+ period then 

extrapolation in time may not be such an issue.  The area of applicability approach described earlier 

will be used to assess the level of extrapolation. 
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